69 research outputs found

    Combined Description of NN\bf{\overline{N}N} Scattering and Annihilation With A Hadronic Model

    Full text link
    A model for the nucleon-antinucleon interaction is presented which is based on meson-baryon dynamics. The elastic part is the GG-parity transform of the Bonn NNNN potential. Annihilation into two mesons is described in terms of microscopic baryon-exchange processes including all possible combinations of π,η,ρ,ω,a0,f0,a1,f1,a2,f2,K,K\pi,\eta,\rho,\omega,a_0,f_0,a_1,f_1,a_2,f_2,K,K^*. The remaining annihilation part is taken into account by a phenomenological energy- and state independent optical potential of Gaussian form. The model enables a simultaneous description of nucleon-antinucleon scattering and annihilation phenomena with fair quality.Comment: revised version, REVTEX, 9 pages, 10 figures available from this URL ftp://ikp113.ikp.kfa-juelich.de/pub/kph140/nucl-th.9411014.u

    Breakup of 17^{17}F on 208^{208}Pb near the Coulomb barrier

    Full text link
    Angular distributions of oxygen produced in the breakup of 17^{17}F incident on a 208^{208}Pb target have been measured around the grazing angle at beam energies of 98 and 120 MeV. The data are dominated by the proton stripping mechanism and are well reproduced by dynamical calculations. The measured breakup cross section is approximately a factor of 3 less than that of fusion at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure

    Efficacy of α-Blockers on Hemodynamic Control during Pheochromocytoma Resection: A Randomized Controlled Trial

    Get PDF
    CONTEXT: Pretreatment with α-adrenergic receptor blockers is recommended to prevent hemodynamic instability during resection of a pheochromocytoma or sympathetic paraganglioma (PPGL). OBJECTIVE: To determine which type of α-adrenergic receptor blocker provides the best efficacy. DESIGN: Randomized controlled open-label trial (PRESCRIPT; ClinicalTrials.gov NCT01379898). SETTING: Multicenter study including 9 centers in The Netherlands. PATIENTS: 134 patients with nonmetastatic PPGL. INTERVENTION: Phenoxybenzamine or doxazosin starting 2 to 3 weeks before surgery using a blood pressure targeted titration schedule. Intraoperative hemodynamic management was standardized. MAIN OUTCOME MEASURES: Primary efficacy endpoint was the cumulative intraoperative time outside the blood pressure target range (ie, SBP >160 mmHg or MAP <60 mmHg) expressed as a percentage of total surgical procedure time. Secondary efficacy endpoint was the value on a hemodynamic instability score. RESULTS: Median cumulative time outside blood pressure targets was 11.1% (interquartile range [IQR]: 4.3-20.6] in the phenoxybenzamine group compared to 12.2% (5.3-20.2)] in the doxazosin group (P = .75, r = 0.03). The hemodynamic instability score was 38.0 (28.8-58.0) and 50.0 (35.3-63.8) in the phenoxybenzamine and doxazosin group, respectively (P = .02, r = 0.20). The 30-day cardiovascular complication rate was 8.8% and 6.9% in the phenoxybenzamine and doxazosin group, respectively (P = .68). There was no mortality after 30 days. CONCLUSIONS: The duration of blood pressure outside the target range during resection of a PPGL was not different after preoperative treatment with either phenoxybenzamine or doxazosin. Phenoxybenzamine was more effective in preventing intraoperative hemodynamic instability, but it could not be established whether this was associated with a better clinical outcome

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Unenhanced CT imaging is highly sensitive to exclude pheochromocytoma: A multicenter study

    Get PDF
    Background: A substantial proportion of all pheochromocytomas is currently detected during the evaluation of an adrenal incidentaloma. Recently, it has been suggested that biochemical testing to rule out pheochromocytoma is unnecessary in case of an adrenal incidentaloma with an unenhanced attenuation value ≤10Hounsfield Units (HU) at computed tomography (CT). Objectives: We aimed to determine the sensitivity of the 10HU threshold value to exclude a pheochromocytoma. Methods: Retrospective multicenter study with systematic reassessment of preoperative unenhanced CT scans performed in patients in whom a histopathologically proven pheochromocytoma had been diagnosed. Unenhanced attenuation values were determined independently by two experienced radiologists. Sensitivity of the 10HU threshold was calculated, and interobserver consistency was assessed using the intraclass correlation coefficient (ICC). Results: 214 patients were identified harboring a total number of 222 pheochromocytomas. Maximum tumor diameter was 51 (39–74)mm. The mean attenuation value within the region of interest was 36±10HU. Only one pheochromocytoma demonstrated an attenuation value ≤10HU, resulting in a sensitivity of 99.6% (95% CI: 97.5–99.9). ICC was 0.81 (95% CI: 0.75–0.86) with a standard error of measurement of 7.3HU between observers. Conclusion: The likelihood of a pheochromocytoma with an unenhanced attenuation value ≤10HU on CT is very low. The interobserver consistency in attenuation measurement is excellent. Our study supports the recommendation that in patients with an adrenal incidentaloma biochemical testing for ruling out pheochromocytoma is only indicated in adrenal tumors with an unenhanced attenuation value >10HU

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts. Chiu et al. present a pan-cancer analysis of lncRNA regulatory interactions. They suggest that the dysregulation of hundreds of lncRNAs target and alter the expression of cancer genes and pathways in each tumor context. This implies that hundreds of lncRNAs can alter tumor phenotypes in each tumor context

    A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers

    Get PDF
    We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. By performing molecular analyses of 2,579 TCGA gynecological (OV, UCEC, CESC, and UCS) and breast tumors, Berger et al. identify five prognostic subtypes using 16 key molecular features and propose a decision tree based on six clinically assessable features that classifies patients into the subtypes

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival
    corecore