995 research outputs found

    A_4 Symmetry and Lepton Masses and Mixing

    Full text link
    Stimulated by Ma's idea which explains the tribimaximal neutrino mixing by assuming an A_4 flavor symmetry, a lepton mass matrix model is investigated. A Frogatt-Nielsen type model is assumed, and the flavor structures of the masses and mixing are caused by the VEVs of SU(2)_L-singlet scalars \phi_i^u and \phi_i^d (i=1,2,3), which are assigned to {\bf 3} and ({\bf 1}, {\bf 1}',{\bf 1}'') of A_4, respectively.Comment: 13 pages including 1 table, errors in Sec.7 correcte

    The dependence of the EIT wave velocity on the magnetic field strength

    Full text link
    "EIT waves" are a wavelike phenomenon propagating in the corona, which were initially observed in the extreme ultraviolet (EUV) wavelength by the EUV Imaging Telescope (EIT). Their nature is still elusive, with the debate between fast-mode wave model and non-wave model. In order to distinguish between these models, we investigate the relation between the EIT wave velocity and the local magnetic field in the corona. It is found that the two parameters show significant negative correlation in most of the EIT wave fronts, {\it i.e.}, EIT wave propagates more slowly in the regions of stronger magnetic field. Such a result poses a big challenge to the fast-mode wave model, which would predict a strong positive correlation between the two parameters. However, it is demonstrated that such a result can be explained by the fieldline stretching model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings, which are generated by successive stretching of closed magnetic field lines pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy

    Formability limits and process window based on fracture analysis of 5A02-O aluminium alloy in splitting spinning

    Get PDF
    Splitting spinning or rotary flow splitting is an advanced forming process for manufacturing axisymmetric integrated parts with bifurcated features and unique characteristics of high-performance and low-weight. During the process, under the kinematic effects of mandrel rotational movement and roller radial feed, plastic deformation occurs accompanied usually by undesirable fracture, which reduces the formability limit (FL). In this study, the kinematic effects on the FL of a 5A02-O aluminium alloy in the splitting spinning process were systematically investigated by finite element simulation based on a modified Lemaitre criterion and physical experiments. The results show that at a given roller feed speed or mandrel rotational speed (forming speed), the FL has a nonlinear relationship with forming speed, which increases firstly and then decreases. With the increase of forming speed, the maximum FL decreases, which appears at the larger forming speed. These variations of FL show that there exists a combined effect of the roller feed speed and mandrel rotational speed, thus a ratio between them, named as the roller feed ratio, is then used to investigate FL. It is found that there exists a critical roller feed ratio of approximately 2 mm/rev, independent of the speeds of roller and mandrel. Below this critical value, the FL increases with the roller feed ratio. While over the critical value, the FL decreases. In addition, the decrease of FL becomes more remarkable with the increase of mandrel rotational speed. Furthermore, the variations of stress triaxiality and tensile plastic strain were analyzed to see their effects on FL. The analyses show that the decrease of tensile plastic strain with the increasing roller feed ratio is dominant the increase of FL below the critical roller feed ratio value. The increase in the stress triaxiality is dominant in the decrease of FL when the roller feed ratio is over the critical value in combination with not too high forming speed, whereas both increases are dominant in the decrease of FL when it is over the critical roller feed ratio value in combination with high forming speed. Based on the kinematic effects of mandrel and roller, the process windows of the splitting spinning process were obtained to improve the FL. It is found that under the condition of the roller feed ratio within 1–2.5 mm/rev, the mandrel rotational speed within 8–100 rev/min and the roller feed speed within 0.5–4 mm/s are helpful to get high FL values. The experiments were carried out to verify the prediction on the FL and the process window. The research provides an in-depth understanding of FL and its affecting factors, and thus lays a basis for process optimization and process parameter configuration

    S_3 Symmetry and Neutrino Masses and Mixings

    Get PDF
    Based on a universal seesaw mass matrix model with three scalars \phi_i, and by assuming an S_3 flavor symmetry for the Yukawa interactions, the lepton masses and mixings are investigated systematically. In order to understand the observed neutrino mixing, the charged leptons (e, \mu, \tau) are regarded as the 3 elements (e_1, e_2, e_3) of S_3, while the neutrino mass-eigenstates are regarded as the irreducible representation (\nu_\eta, \nu_\sigma, \nu_\pi) of S_3, where (\nu_\pi, \nu_\eta) and \nu_\sigma are a doublet and a singlet, respectively, which are composed of the 3 elements (\nu_1, \nu_2, \nu_3) of S_3.Comment: 16 pages, no figure, version to appear in EPJ-

    Tri-Bimaximal Mixing from Twisted Friedberg-Lee Symmetry

    Get PDF
    We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μτ\mu - \tau symmetry, and call that the twisted FL symmetry.Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing.In the first scheme, we suggest the semi-uniform translation of the FL symmetry.The second one is based on the S3S_3 permutation family symmetry.The breaking terms, which are twisted FL symmetric, are introduced.Some viable models in each scheme are also presented.Comment: 14 pages, no figure. v2: 16 pages, modified some sentences, appendix added, references added. v3: 14 pages, composition simplified, accepted version in EPJ

    A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4

    Get PDF
    We discuss a grand unified model based on SUSY SU(5) in extra dimensions and on the flavour group A4xU(1) which, besides reproducing tri-bimaximal mixing for neutrinos with the accuracy required by the data, also leads to a natural description of the observed pattern of quark masses and mixings.Comment: 19 page

    The 3-3-1 model with S_4 flavor symmetry

    Full text link
    We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge \mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.Comment: 20 pages, revised versio

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    Energy Independent Solution to the Solar Neutrino Anomaly including the SNO data

    Get PDF
    The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the energy independent solution -- corresponding to near-maximal mixing. All the three favour a mild upward renormalisation of the Cl rate. A mild downward shift of the BB neutrino flux is favoured by the energy independent and to a lesser extent the LOW solution, but not by LMA. Comparison with the ratio of SK elastic and SNO charged current scattering rates favours the LMA over the other two solutions, but by no more than 1.5σ1.5\sigma.Comment: 18 pages, latex, 3 figure
    corecore