127 research outputs found

    Stability of Ge-related point defects and complexes in Ge-doped SiO_2

    Full text link
    We analyze Ge-related defects in Ge-doped SiO_2 using first-principles density functional techniques. Ge is incorporated at the level of ~ 1 mol % and above. The growth conditions of Ge:SiO_2 naturally set up oxygen deficiency, with vacancy concentration increasing by a factor 10^5 over undoped SiO_2, and O vacancies binding strongly to Ge impurities. All the centers considered exhibit potentially EPR-active states, candidates for the identification of the Ge(n) centers. Substitutional Ge produces an apparent gap shrinking via its extrinsic levels.Comment: RevTeX 4 pages, 2 ps figure

    Neutral-ionic phase transition : a thorough ab-initio study of TTF-CA

    Full text link
    The prototype compound for the neutral-ionic phase transition, namely TTF-CA, is theoretically investigated by first-principles density functional theory calculations. The study is based on three neutron diffraction structures collected at 40, 90 and 300 K (Le Cointe et al., Phys. Rev. B 51, 3374 (1995)). By means of a topological analysis of the total charge densities, we provide a very precise picture of intra and inter-chain interactions. Moreover, our calculations reveal that the thermal lattice contraction reduces the indirect band gap of this organic semi-conductor in the neutral phase, and nearly closes it in the vicinity of the transition temperature. A possible mechanism of the neutral-ionic phase transition is discussed. The charge transfer from TTF to CA is also derived by using three different technics.Comment: 11 pages, 9 figures, 7 table

    Phase Separation in Lix_xFePO4_4 Induced by Correlation Effects

    Full text link
    We report on a significant failure of LDA and GGA to reproduce the phase stability and thermodynamics of mixed-valence Lix_xFePO4_4 compounds. Experimentally, Lix_xFePO4_4 compositions (0x10 \leq x \leq 1) are known to be unstable and phase separate into Li FePO4_4 and FePO4_4. However, first-principles calculations with LDA/GGA yield energetically favorable intermediate compounds an d hence no phase separation. This qualitative failure of LDA/GGA seems to have its origin in the LDA/GGA self-interaction which de localizes charge over the mixed-valence Fe ions, and is corrected by explicitly considering correlation effects in this material. This is demonstrated with LDA+U calculations which correctly predict phase separation in Lix_xFePO4_4 for UJ3.5U-J \gtrsim 3.5eV. T he origin of the destabilization of intermediate compounds is identified as electron localization and charge ordering at different iron sites. Introduction of correlation also yields more accurate electrochemical reaction energies between FePO4_4/Lix_xFePO4_ 4 and Li/Li+^+ electrodes.Comment: 12 pages, 5 figures, Phys. Rev. B 201101R, 200

    Large Orbital Magnetic Moment and Coulomb Correlation effects in FeBr2

    Full text link
    We have performed an all-electron fully relativistic density functional calculation to study the magnetic properties of FeBr2. We show for the first time that the correlation effect enhances the contribution from orbital degrees of freedom of dd electrons to the total magnetic moment on Fe2+^{2+} as opposed to common notion of nearly total quenching of the orbital moment on Fe2+^{2+} site. The insulating nature of the system is correctly predicted when the Hubbard parameter U is included. Energy bands around the gap are very narrow in width and originate from the localized Fe-3dd orbitals, which indicates that FeBr2 is a typical example of the Mott insulator.Comment: 4 pages, 3 figures, revtex4, PRB accepte

    Structural and magnetic properties of Fe/ZnSe(001) interfaces

    Full text link
    We have performed first principles electronic structure calculations to investigate the structural and magnetic properties of Fe/ZnSe(001) interfaces. Calculations involving full geometry optimizations have been carried out for a broad range of thickness of Fe layers(0.5 monolayer to 10 monolayers) on top of a ZnSe(001) substrate. Both Zn and Se terminated interfaces have been explored. Total energy calculations show that Se segregates at the surface which is in agreement with recent experiments. For both Zn and Se terminations, the interface Fe magnetic moments are higher than the bulk bcc Fe moment. We have also investigated the effect of adding Fe atoms on top of a reconstructed ZnSe surface to explore the role of reconstruction of semiconductor surfaces in determining properties of metal-semiconductor interfaces. Fe breaks the Se dimer bond formed for a Se-rich (2x1) reconstructed surface. Finally, we looked at the reverse growth i.e. growth of Zn and Se atoms on a bcc Fe(001) substrate to investigate the properties of the second interface of a magnetotunnel junction. The results are in good agreement with the theoretical and experimental results, wherever available.Comment: 7 pages, 8 figures, accepted for publication in PR

    quasiharmonic equations of state for dynamically-stabilized soft-mode materials

    Get PDF
    We introduce a method for treating soft modes within the analytical framework of the quasiharmonic equation of state. The corresponding double-well energy-displacement relation is fitted to a functional form that is harmonic in both the low- and high-energy limits. Using density-functional calculations and statistical physics, we apply the quasiharmonic methodology to solid periclase. We predict the existence of a B1--B2 phase transition at high pressures and temperatures

    Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations

    Full text link
    We study the convergence and the stability of fictitious dynamical methods for electrons. First, we show that a particular damped second-order dynamics has a much faster rate of convergence to the ground-state than first-order steepest descent algorithms while retaining their numerical cost per time step. Our damped dynamics has efficiency comparable to that of conjugate gradient methods in typical electronic minimization problems. Then, we analyse the factors that limit the size of the integration time step in approaches based on plane-wave expansions. The maximum allowed time step is dictated by the highest frequency components of the fictitious electronic dynamics. These can result either from the large wavevector components of the kinetic energy or from the small wavevector components of the Coulomb potential giving rise to the so called {\it charge sloshing} problem. We show how to eliminate large wavevector instabilities by adopting a preconditioning scheme that is implemented here for the first-time in the context of Car-Parrinello ab-initio molecular dynamics simulations of the ionic motion. We also show how to solve the charge-sloshing problem when this is present. We substantiate our theoretical analysis with numerical tests on a number of different silicon and carbon systems having both insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.
    corecore