757 research outputs found

    Effects of Boron Purity, Mg Stoichiometry and Carbon Substitution on Properties of Polycrystalline MgB2_{2}

    Full text link
    By synthesizing MgB2_{2} using boron of different nominal purity we found values of the residual resistivity ratio (RRR=R(300K)/R(42K)RRR = R(300 K) / R(42 K)) from 4 to 20, which covers almost all values found in literature. To obtain high values of RRRRRR, high purity reagents are necessary. With the isotopically pure boron we obtained the highest RRRRRR \sim 20 for the stoichiometric compound. We also investigated Mgx_{x}11^{11}B2_{2} samples with 0.8 <x<< x < 1.2. For the range Mg0.8_{0.8}11^{11}B2_{2} up to Mg1.2_{1.2}11^{11}B2_{2} we found average values of RRRRRR between 14 and 24. For smaller variations in stoichiometry (x=1±0.1x=1\pm 0.1) RRR=18±3RRR = 18 \pm 3. All of our data point to the conclusion that high RRRRRR (20\sim 20) and low ρ0\rho_{0} (0.4μΩcm\leq 0.4 \mu \Omega cm) are intrinsic material properties associated with high purity MgB2_{2}. In addition we have performed initial work on optimizing the formation of carbon doped MgB2_{2} via the use of B4_{4}C. Nearly single phase material can be formed by reaction of nominal Mg(B0.8_{0.8}C0.2_{0.2})2_{2} for 24 hours at 1200C1200^{\circ}C. The TcT_{c} for this composition is between 21.9K21.9 K and 22.7K22.7 K (depending on criterion).Comment: accepted to Physica C, special MgB2 issu

    Effects of stoichiometry, purity, etching and distilling on resistance of MgB2 pellets and wire segments

    Full text link
    We present a study of the effects of non-stoichiometry, boron purity, wire diameter and post-synthesis treatment (etching and Mg distilling) on the temperature dependent resistance and resistivity of sintered MgB2 pellets and wire segments. Whereas the residual resistivity ratio (RRR) varies between RRR \~ 4 to RRR > 20 for different boron purity, it is only moderately affected by non-stoichiometry (from 20% Mg deficiency to 20% Mg excess) and is apparently independent of wire diameter and presence of Mg metal traces on the wire surface. The obtained set of data indicates that RRR values in excess of 20 and residual resistivities as low as rho{0} ~ 0.4 mu Ohm cm are intrinsic material properties of high purity MgB2

    Phosphate: from stardust to eukaryotic cell cycle control

    Get PDF
    Phosphorus is a pivotal element in all biochemical systems: it serves to store metabolic energy as ATP, it forms the backbone of genetic material such as RNA and DNA, and it separates cells from the environment as phospholipids. In addition to this &ldquo;big hits&rdquo;, phosphorus has recently been shown to play an important role in other important processes such as cell cycle regulation. In the present review, we briefly summarize the biological processes in which phosphorus is involved in the yeast Saccharomyces cerevisiae before discussing our latest findings on the role of this element in the regulation of DNA replication in this eukaryotic model organism. We describe both the role of phosphorus in the regulation of G1 progression by means of the Cyclin Dependent Kinase (CDK) Pho85 and the stabilization of the cyclin Cln3, as well as the role of other molecule composed of phosphorus&ndash;the polyphosphate&ndash;in cell cycle progression, dNTP synthesis, and genome stability. Given the eminent role played by phosphorus in life, we outline the future of phosphorus in the context of one of the main challenges in human health: cancer treatment. [Int Microbiol 19(3):133-141 (2016)]Keywords: Saccharomyces cerevisiae &middot; Pho85 &middot; cyclin &middot; polyphosphate &middot; cell cycl

    Proteinase activity regulation by glycosaminoglycans

    Get PDF
    There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term family is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.Universidade de Mogi das Cruzes Centro Interdisciplinar de Investigação BioquímicaUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de BiofísicaUNIFESP, EPM, Depto. de BiofísicaSciEL

    Carbon doping of superconducting magnesium diboride

    Full text link
    We present details of synthesis optimization and physical properties of nearly single phase carbon doped MgB2 with a nominal stoichiometry of Mg(B{0.8}C{0.2})2 synthesized from magnesium and boron carbide (B4C) as starting materials. The superconducting transition temperature is ~ 22 K (~ 17 K lower than in pure MgB2). The temperature dependence of the upper critical field is steeper than in pure MgB2 with Hc2(10K) ~ 9 T. Temperature dependent specific heat data taken in different applied magnetic fields suggest that the two-gap nature of superconductivity is still preserved for carbon doped MgB2 even with such a heavily suppressed transition temperature. In addition, the anisotropy ratio of the upper critical field for T/Tc ~ 2/3 is gamma ~ 2. This value is distinct from 1 (isotropic) and also distinct from 6 (the value found for pure MgB2).Comment: 11 pages, 13 figures, submitted to Physica

    Effect of pressure on the superconducting transition temperature of doped and neutron-damaged MgB2

    Full text link
    Measurements of the superconducting transition temperatures for Al-doped, C-doped and neutron-damaged-annealed MgB2 samples under pressure up to ~8 kbar are presented. The dT_c/dP values change systematically with the decrease of the ambient pressure T_c in a regular fashion. The evolution of the pressure derivatives can be understood assuming that the change in phonon spectrum is a dominant contribution to dT_c/dP

    Superconductivity in MgB_2 doped with Ti and C

    Full text link
    Measurements of the superconducting upper critical field, H_{c2}, and critical current density, J_c, have been carried out for MgB_2 doped with Ti and/or C in order to explore the problems encountered if these dopants are used to enhance the superconducting performance. Carbon replaces boron in the MgB_2 lattice and apparently shortens the electronic mean free path thereby raising H_c2. Titanium forms precipitates of either TiB or TiB_2 that enhance the flux pinning and raise J_c. Most of these precipitates are intra-granular in the MgB_2 phase. If approximately 0.5% Ti and approximately 2% C are co-deposited with B to form doped boron fibers and these fibers are in turn reacted in Mg vapor to form MgB_2, the resulting superconductor has H_{c2}(T=0) ~ 25 T and J_c ~ 10,000 A/cm**2 at 5 K and 2.2 T.Comment: 11 pages, 10 figure

    Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites

    Full text link
    Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39 K, have evidenced its potential for applications although intense magnetic relaxation effects limit the critical current density, Jc, at high magnetic fields. This means that effective pinning centers must be added into the material microstructure, in order to halt dissipative flux movements. Concerning the basic microscopic mechanism to explain the superconductivity in MgB2, several experimental and theoretical works have pointed to the relevance of a phonon-mediated interaction, in the framework of the BCS theory. Questions have been raised about the relevant phonon modes, and the gap and Fermi surface anisotropies, in an effort to interpret spectroscopic and thermal data that give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results on the anisotropy of Hc2 have shown a ratio, between the in-plane and perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for epitaxial thin films. Here we show a study on the angular dependence of Hc2 pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly implies the use of texturization techniques to optimize Jc in MgB2 wires and other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.

    On perfect fluid models in non-comoving observational spherical coordinates

    Full text link
    We use null spherical (observational) coordinates to describe a class of inhomogeneous cosmological models. The proposed cosmological construction is based on the observer past null cone. A known difficulty in using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to explore models in a non-comoving frame of reference. In this frame, we find that the velocity field has shear, acceleration and expansion rate in general. We show that a comoving frame is not compatible with expanding perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the models in a non-comoving frame. We use the dust models in a non-comoving frame to outline a fitting procedure.Comment: 8 pages, 1 figure. To appear in Phys.Rev.
    corecore