2,838 research outputs found
A longitudinal study of abnormalities on MRI and disability from multiple sclerosis
Background: In patients with isolated syndromes that are clinically suggestive of multiple sclerosis, such as optic neuritis or brain-stem or spinal cord syndromes, the presence of lesions as determined by T2-weighted magnetic resonance imaging (MRI) of the brain increases the likelihood that multiple sclerosis will develop. We sought to determine the relation between early lesion volume, changes in volume, and long-term disability.
Methods: Seventy-one patients in a serial MRI study of patients with isolated syndromes were reassessed after a mean of 14.1 years. Disability was measured with the use of Kurtzke's Expanded Disability Status Scale (EDSS; possible range, 0 to 10, with a higher score indicating a greater degree of disability).
Results: Clinically definite multiple sclerosis developed in 44 of the 50 patients (88 percent) with abnormal results on MRI at presentation and in 4 of 21 patients (19 percent) with normal results on MRI. The median EDSS score at follow-up for those with multiple sclerosis was 3.25 (range, 0 to 10); 31 percent had an EDSS score of 6 or more (including three patients whose deaths were due to multiple sclerosis). The EDSS score at 14 years correlated moderately with lesion volume on MRI at 5 years (r=0.60) and with the increase in lesion volume over the first 5 years (r=0.61).
Conclusions: In patients who first present with isolated syndromes suggestive of multiple sclerosis, the increases in the volume of the lesions seen on magnetic resonance imaging of the brain in the first five years correlate with the degree of long-term disability from multiple sclerosis. This relation is only moderate, so the volume of the lesions alone may not be an adequate basis for decisions about the use of disease-modifying treatment
The P Cygni supergiant [OMN2000] LS1 – implications for the star formation history of W51
Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200911980Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation within the host complex W51. Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties of [OMN2000] LS1 , and a combination of theoretical evolutionary calculations and Monte Carlo simulations to apply limits on the star formation history of W51. Results. We find the spectrum of [OMN2000] LS1 to be consistent with that of a P Cygni supergiant. With a temperature in the range of 13.2–13.7 kK and log( ) , it is significantly cooler, less luminous, and less massive than proposed by previous authors. The presence of such a star within W51 shows that star formation has been underway for at least 3 Myr, while the formation of massive O stars is still on going. The lack of a population of evolved red supergiants within the complex shows that the rate of formation of young massive clusters at ages 9 Myr was lower than currently observed. We find no evidence of internally triggered, sequential star formation within W51, and favour the suggestion that star formation has proceeded at multiple indepedent sites within the GMC. Along with other examples, such as the G305 and Carina star-forming regions, we suggest that W51 is a Galactic analogue of the ubiquitous star cluster complexes seen in external galaxies such as M51 and NGC2403.Peer reviewe
Asymptotic Giant Branch Variables in the Galaxy and the Local Group
AGB variables, particularly the large amplitude Mira type, are a vital step
on the distance scale ladder. They will prove particularly important in the era
of space telescopes and extremely large ground-based telescopes with adaptive
optics, which will be optimized for infrared observing. Our current
understanding of the distances to these stars is reviewed with particular
emphasis on improvements that came from Hipparcos as well as on recent work on
Local Group galaxies. In addition to providing the essential calibration for
extragalactic distances Gaia may also provide unprecedented insight into the
poorly understood mass-loss process itself.Comment: Accepted for publication in Astrophysics and Space Science. From a
presentation at the conference "The Fundamental Cosmic Distance Scale: State
of the Art and Gaia Perspective, Naples May 2011. 8 Pages, 9 Figure
Physical and chemical signatures of a developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean
A multidisciplinary cruise aboard the R/V Southern Surveyor was conducted in May 2006 to sample a developing anticyclonic eddy of the Leeuwin Current off Western Australia. The eddy formed from a meander of the Leeuwin Current in mid-April 2006 and remained attached to the current until mid-August. In this study, a combination of satellite data (altimeter, sea surface temperature, and chlorophyll a) and shipboard measurements (acoustic Doppler current profiler and conductivity-temperature-depth) were used to characterize the physical and chemical signatures of the eddy. The temperature-salinity properties of the mixed layer waters within the anticyclonic eddy and on the shelf were both connected to that of the Leeuwin Current, indicating the water mass in the eddy is mainly derived from the Leeuwin Current and the modified Leeuwin Current water on the shelf. Above the salinity maximum near the eddy center, there was a regionally significant concentration of nitrate (>0.9 μmol L-1), and the maximum (2 μmol L-1) was at 150 in depth, below the photic zone. Nitrification within the eddy and/or local upwelling due to the forming eddy could be responsible for this high concentration of nitrate near the eddy center which potentially makes the eddy a relatively productive feature in the Leeuwin Current
Molecular scale contact line hydrodynamics of immiscible flows
From extensive molecular dynamics simulations on immiscible two-phase flows,
we find the relative slipping between the fluids and the solid wall everywhere
to follow the generalized Navier boundary condition, in which the amount of
slipping is proportional to the sum of tangential viscous stress and the
uncompensated Young stress. The latter arises from the deviation of the
fluid-fluid interface from its static configuration. We give a continuum
formulation of the immiscible flow hydrodynamics, comprising the generalized
Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard
interfacial free energy. Our hydrodynamic model yields interfacial and velocity
profiles matching those from the molecular dynamics simulations at the
molecular-scale vicinity of the contact line. In particular, the behavior at
high capillary numbers, leading to the breakup of the fluid-fluid interface, is
accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with
captions, content changed in this resubmissio
Shear-dependent apparent slip on hydrophobic surfaces: The Mattress Model
Recent experiments (Zhu & Granick (2001) Phys. Rev. Lett. 87 096105) have
measured a large shear dependent fluid slip at partially wetting fluid-solid
surfaces. We present a simple model for such slip, motivated by the recent
observations of nanobubbles on hydrophobic surfaces. The model considers the
dynamic response of bubbles to change in hydrodynamic pressure due to the
oscillation of a solid surface. Both the compression and diffusion of gas in
the bubbles decrease the force on the oscillating surface by a ``leaking
mattress'' effect, thereby creating an apparent shear-dependent slip. With
bubbles similar to those observed by atomic force microscopy to date, the model
is found to lead to force decreases consistent with the experimental
measurements of Zhu & Granick
Adsorption-desorption kinetics in nanoscopically confined oligomer films under shear
The method of molecular dynamics computer simulations is employed to study oligomer melts confined in ultra-thin films and subjected to shear. The focus is on the self-diffusion of oligomers near attractive surfaces and on their desorption, together with the effects of increasing energy of adsorption and shear. It is found that the mobility of the oligomers near an attractive surface is strongly decreased. Moreover, although shearing the system forces the chains to stretch parallel to the surfaces and thus increase the energy of adsorption per chain, flow also promotes desorption. The study of chain desorption kinetics reveals the molecular processes responsible for the enhancement of desorption under shear. They involve sequences of conformations starting with a desorbed tail and proceeding in a very fast, correlated, segment-by-segment manner to the desorption of the oligomers from the surfaces.
Ant colony optimisation for planning safe escape routes
An emergency requiring evacuation is a chaotic event filled with uncertainties both for the people affected and rescuers. The evacuees are often left to themselves for navigation to the escape area. The chaotic situation increases when a predefined escape route is blocked by a hazard, and there is a need to re-think which escape route is safest. This paper addresses automatically finding the safest escape route in emergency situations in large buildings or ships with imperfect knowledge of the hazards. The proposed solution, based on Ant Colony Optimisation, suggests a near optimal escape plan for every affected person — considering both dynamic spread of hazards and congestion avoidance.The solution can be used both on an individual bases, such as from a personal smart phone of one of the evacuees, or from a remote location by emergency personnel trying to assist large groups
Orthopedic surgery increases atherosclerotic lesions and necrotic core area in ApoE-/- mice
Background and aims Observational studies show a peak incidence of cardiovascular events after major surgery. For example, the risk of myocardial infarction increases 25-fold early after hip replacement. The acuteness of this increased risk suggests abrupt enhancement in plaque vulnerability, which may be related to intra-plaque inflammation, thinner fibrous cap and/or necrotic core expansion. We hypothesized that acute systemic inflammation following major orthopedic surgery induces such changes. Methods ApoE−/− mice were fed a western diet for 10 weeks. Thereafter, half the mice underwent mid-shaft femur osteotomy followed by realignment with an intramedullary K-wire, to mimic major orthopedic surgery. Mice were sacrificed 5 or 15 days post-surgery (n = 22) or post-saline injection (n = 13). Serum amyloid A (SAA) was measured as a marker of systemic inflammation. Paraffin embedded slides of the aortic root were stained to measure total plaque area and to quantify fibrosis, calcification, necrotic core, and inflammatory cells. Results Surgery mice showed a pronounced elevation of serum amyloid A (SAA) and developed increased plaque and necrotic core area already at 5 days, which reached significance at 15 days (p = 0.019; p = 0.004 for plaque and necrotic core, respectively). Macrophage and lymphocyte density significantly decreased in the surgery group compared to the control group at 15 days (p = 0.037; p = 0.024, respectively). The density of neutrophils and mast cells remained unchanged. Conclusions Major orthopedic surgery in ApoE−/− mice triggers a systemic inflammatory response. Atherosclerotic plaque area is enlarged after surgery mainly due to an increase of the necrotic core. The role of intra-plaque inflammation in this response to surgical injury remains to be fully elucidated. © 2016 Elsevier Ireland Lt
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
- …
