482 research outputs found

    Different rhythms of health biotechnology development in Brazil and Cuba

    Full text link
    Biotechnology is typically associated with the centres of learning and firms in industrialised countries but usually not with institutions in developing countries. Developing nations are however, becoming active in this field and are increasingly using recombinant methods to produce new and innovative health products for their populations. Here we will examine health biotechnology development in two developing countries, Brazil and Cuba. We will compare the major characteristics of their health biotechnology sectors and highlight factors that have shaped their development in order to understand better what main factors and conditions can promote health biotechnology innovation in developing countries

    Evolution of the pairing pseudogap in the spectral function with interplane anisotropy

    Full text link
    We study the pairing pseudogap in the spectral function as a function of interplane coupling. The analytical expressions for the self-energy in the critical regime are obtained for any degree of anisotropy. The frequency dependence of the self-energy is found to be qualitatively different in two and three dimensions, and the crossover from two to three dimensional behavior is discussed. In particular, by considering the anisotropy of the Fermi velocity and gap along the Fermi surface, we can qualitatively explain recent photoemission experiments on high temperature superconductors concerning the temperature dependent Fermi arcs seen in the pseudogap phase.Comment: 20 pages, revtex, 5 encapsulated postscript figures include

    Guest—Host Cross-linked Polyimides for Integrated Optics

    Full text link
    We report on the optical and electrical characterization of aromatic, fluorinated, fully imidized, organic soluble, thermally and photochemically, crosslinkable, guest-host polyimides for integrated optics. Refractive indices and optical losses were measured to evaluate the performance of these materials for passive applications. Materials were doped with two high temperature nonlinear optical chromophores, and poled during crosslinking to produce nonlinear optical materials. Measurements of electro-optic coefficient, macroscopic second order susceptibility, and conductivity were performed to assess these materials as potential candidates for active devices

    Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum

    Get PDF
    A qualitative mechanism for the emergence of domain structured background gluon fields due to singularities in gauge field configurations is considered, and a model displaying a type of mean field approximation to the QCD partition function based on this mechanism is formulated. Estimation of the vacuum parameters (gluon condensate, topological susceptibility, string constant and quark condensate) indicates that domain-like structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous breakdown of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus describe confined dynamical fields.Comment: RevTeX, 48 pages (32 pages + Appendices A-E), new references added [1,2,4,5] and minor formulae corrected for typographical error

    Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress

    Get PDF
    Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer sit

    Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?

    Full text link
    There is considerable evidence for some form of charge ordering on the hole-doped stripes in the cuprates, mainly associated with the low-temperature tetragonal phase, but with some evidence for either charge density waves or a flux phase, which is a form of dynamic charge-density wave. These three states form a pseudospin triplet, demonstrating a close connection with the E X e dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller effect as a form of flux phase. A simple model of the Cu-O bond stretching phonons allows an estimate of electron-phonon coupling for these modes, explaining why the half breathing mode softens so much more than the full oxygen breathing mode. The anomalous properties of O2O^{2-} provide a coupling (correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon modes, 16 eps figures, revte

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Study of the Process e+ e- --> pi0 pi0 gamma in c.m. Energy Range 600--970 MeV at CMD-2

    Get PDF
    The cross section of the process e+ e- --> pi0 pi0 gamma has been measured in the c.m. energy range 600--970 MeV with the CMD-2 detector. The following branching ratios have been determined: B(rho --> pi0 pi0 gamma) =(5.2^{+1.5}_{-1.3} +- 0.6)x10^{-5} and B(omega --> pi0 pi0 gamma) =(6.4^{+2.4}_{-2.0} +- 0.8)x10^{-5}. Evidence for the rho --> f0(600) gamma decay has been obtained: B(rho --> f0(600) gamma) = (6.0^{+3.3}_{-2.7}\pm 0.9)x10^{-5}. From a search for the process e+ e- --> eta pi0 gamma the following upper limit has been obtained: B(omega --> eta pi0 gamma) < 3.3 10^{-5} at 90% CL.Comment: 15 pages, 4 figure

    Bodily tides near spin-orbit resonances

    Full text link
    Spin-orbit coupling can be described in two approaches. The method known as "the MacDonald torque" is often combined with an assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because the MacDonald theory tacitly fixes the rheology by making Q scale as the inverse tidal frequency. Spin-orbit coupling can be treated also in an approach called "the Darwin torque". While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been exploited in the literature, where Q is assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence the necessity to enrich the theory of spin-orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles, i.e., from the expression for the mantle's compliance in the time domain. We also explain that the tidal torque includes not only the secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin-Kaula expansion for the tidal torque smoothly goes through zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). We also offer a possible explanation for the unexpected frequency-dependence of the tidal dissipation rate in the Moon, discovered by LLR

    Lignin deconstruction by anaerobic fungi

    Get PDF
    Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose
    corecore