405 research outputs found

    Triaxiality and the determination of the cubic shape parameter K3 from five observables

    Full text link
    The absolute and the relative quadrupole shape invariants q3 and K3 provide a model independent measure of triaxiality for beta-rigid nuclei. We will show that one can obtain q3 and K3 from a small number of observables. The approximations which are made will be shown to hold within a few percent both in the rigid triaxial rotor model and the interacting boson model. The shape parameter K3 is given for an exemplary set of nuclei and is translated into effective values of the geometrical deformation parameters beta and gamma.Comment: 16 pages, 4 figure

    Alternative Interpretation of Sharply Rising E0 Strengths in Transitional Regions

    Full text link
    It is shown that strong 0+2 -> 0+1 E0 transitions provide a clear signature of phase transitional behavior in finite nuclei. Calculations using the IBA show that these transition strengths exhibit a dramatic and robust increase in spherical-deformed shape transition regions, that this rise matches well the existing data, that the predictions of these E0 transitions remain large in deformed nuclei, and that these properties are intrinsic to the way that collectivity and deformation develop through the phase transitional region in the model, arising from the specific d-boson coherence in the wave functions, and that they do not necessarily require the explicit mixing of normal and intruder configurations from different IBA spaces.Comment: 6 pages, 3 figure

    49Cr: Towards full spectroscopy up to 4 MeV

    Full text link
    The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme has been greatly extended at low excitation energy and several new lifetimes have been determined by means of the Doppler Shift Attenuation Method. Shell model calculations in the full pf configuration space reproduce well negative-parity levels. Satisfactory agreement is obtained for positive parity levels by extending the configuration space to include a nucleon-hole either in the 1d3/2 or in the 2s1/2 orbitals. A nearly one-to-one correspondence is found between experimental and theoretical levels up to an excitation energy of 4 MeV. Experimental data and shell model calculations are interpreted in terms of the Nilsson diagram and the particle-rotor model, showing the strongly coupled nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed for the levels observed in this experiment. As a by-result it is shown that the values of the experimental magnetic moments in 1f7/2 nuclei are well reproduced without quenching the nucleon g-factors.Comment: 13 pages, 8 figure

    Spectral Decorrelation of Nuclear Levels in the Presence of Continuum Decay

    Full text link
    The fluctuation properties of nuclear giant resonance spectra are studied in the presence of continuum decay. The subspace of quasi-bound states is specified by one-particle one-hole and two-particle two-hole excitations and the continuum coupling is generated by a scattering ensemble. It is found that, with increasing number of open channels, the real parts of the complex eigenvalues quickly decorrelate. This appears to be related to the transition from power-law to exponential time behavior of the survival probability of an initially non-stationary state.Comment: 10 Pages, REVTEX, 4 PostScript figure

    Interfering Doorway States and Giant Resonances. I: Resonance Spectrum and Multipole Strengths

    Get PDF
    A phenomenological schematic model of multipole giant resonances (GR) is considered which treats the external interaction via common decay channels on the same footing as the coherent part of the internal residual interaction. The damping due to the coupling to the sea of complicated states is neglected. As a result, the formation of GR is governed by the interplay and competition of two kinds of collectivity, the internal and the external one. The mixing of the doorway components of a GR due to the external interaction influences significantly their multipole strengths, widths and positions in energy. In particular, a narrow resonance state with an appreciable multipole strength is formed when the doorway components strongly overlap.Comment: 20 pages, LaTeX, 3 ps-figures, to appear in PRC (July 1997

    Quadrupole shape invariants in the interacting boson model

    Get PDF
    In terms of the Interacting Boson Model, shape invariants for the ground state, formed by quadrupole moments up to sixth order, are studied in the dynamical symmetry limits and, for the first time, over the whole structural range of the IBM-1. The results are related to the effective deformation parameters and their fluctuations in the geometrical model. New signatures that can distinguish vibrator and gamma-soft rotor structures, and one that is related to shape coexistence, are identified.Comment: 10 pages, ReVTeX, epsf, 2 Postscript figures include
    corecore