18,758 research outputs found

    Wavelet-based Faraday Rotation Measure Synthesis

    Full text link
    Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the negative lambda square. We introduce a simple method for continuation of the observed complex polarized intensity into this domain using symmetry arguments. The method is suggested in context of magnetic field recognition in galactic disks where the magnetic field is supposed to have a maximum in the equatorial plane. The method is quite simple when applied to a single Faraday-rotating structure on the line of sight. Recognition of several structures on the same line of sight requires a more sophisticated technique. We also introduce a wavelet-based algorithm which allows us to consider a set of isolated structures. The method essentially improves the possibilities for reconstruction of complicated Faraday structures using the capabilities of modern radio telescopes.Comment: 5 pages, 5 figures, accepted for publication in MNRAS Letter

    Mixing and relaxation dynamics of the Henon map at the edge of chaos

    Full text link
    The mixing properties (or sensitivity to initial conditions) and relaxation dynamics of the Henon map, together with the connection between these concepts, have been explored numerically at the edge of chaos. It is found that the results are consistent with those coming from one-dimensional dissipative maps. This constitutes the first verification of the scenario in two-dimensional cases and obviously reinforces the idea of weak mixing and weak chaos. Keywords: Nonextensive thermostatistics, Henon map, dynamical systemsComment: 10 pages with 3 fig

    Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets

    Full text link
    An experimental overview of reactions induced by the stable, but weakly-bound nuclei 6Li, 7Li and 9Be, and by the exotic, halo nuclei 6He, 8B, 11Be and 17F on medium-mass targets, such as 58Ni, 59Co or 64Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.Comment: 7 pages, 6 figures, Invited Talk given by C. Beck to the 10th International Conference on Nucleus-Nucleus Collisions, August 16-21, 2009 Beijing, China; Paper submitted to the NN2009 Proceedings, Nuclear Physics A (to be published

    Properties of the warm magnetized ISM, as inferred from WSRT polarimetric imaging

    Get PDF
    We describe a first attempt to derive properties of the regular and turbulent Galactic magnetic field from multi-frequency polarimetric observations of the diffuse Galactic synchrotron background. A single-cell-size model of the thin Galactic disk is constructed which includes random and regular magnetic fields and thermal and relativistic electrons. The disk is irradiated from behind with a uniform partially polarized background. Radiation from the background and from the thin disk is Faraday rotated and depolarized while propagating through the medium. The model parameters are estimated from a comparison with 350 MHz observations in two regions at intermediate latitudes done with the Westerbork Synthesis Radio Telescope. We obtain good consistency between the estimates for the random and regular magnetic field strengths and typical scales of structure in the two regions. The regular magnetic field strength found is a few microGauss, and the ratio of random to regular magnetic field strength is 0.7 +/- 0.5, for a typical scale of the random component of 15 +/- 10 pc. Furthermore, the regular magnetic field is directed almost perpendicular to the line of sight. This modeling is a potentially powerful method to estimate the structure of the Galactic magnetic field, especially when more polarimetric observations of the diffuse synchrotron background at intermediate latitudes become available.Comment: 12 pages, 6 figures, accepted by A&

    Acousto-optical multiple interference devices

    Get PDF
    We present a new concept for waveguide acousto-optical devices based on coupled MachZehnder interferometers driven by acoustic waves. These acousto-optical multiple interference devices use the periodic refractive index modulation induced by the acoustic wave to realize functionalities such as ON/OFF switching for an arbitrary time interval, as well as for efficient light modulation at high harmonics of the acoustic frequency and pulse shaping for, e.g., integrated Q-switches. We also discuss application of the concepts to light modulation by very high acoustic frequencies, where the acoustic wavelengths become much shorter than the optical ones
    corecore