1,928 research outputs found
Shape, spin and baryon fraction of clusters in the MareNostrum Universe
The MareNostrum Universe is one of the largest cosmological
SPH simulation done so far. It consists of dark and
gas particles in a box of 500 Mpc on a side. Here we study
the shapes and spins of the dark matter and gas components of the 10,000 most
massive objects extracted from the simulation as well as the gas fraction in
those objects. We find that the shapes of objects tend to be prolate both in
the dark matter and gas. There is a clear dependence of shape on halo mass, the
more massive ones being less spherical than the less massive objects. The gas
distribution is nevertheless much more spherical than the dark matter, although
the triaxiality parameters of gas and dark matter differ only by a few percent
and it increases with cluster mass. The spin parameters of gas and dark matter
can be well fitted by a lognormal distribution function. On average, the spin
of gas is 1.4 larger than the spin of dark matter. We find a similar behavior
for the spins at higher redshifts, with a slightly decrease of the spin ratios
to 1.16 at The cosmic normalized baryon fraction in the entire cluster
sample ranges from , at to at . At both
redshifts we find a slightly, but statistically significant decrease of
with cluster mass.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical
Journa
High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair
We present the results of a set of numerical simulations aimed at studying
reionization at galactic scale. We use a high resolution simulation of the
formation of the Milky Way-M31 system to simulate the reionization of the local
group. The reionization calculation was performed with the post-processing
radiative transfer code ATON and the underlying cosmological simulation was
performed as part of the CLUES project. We vary the source models to bracket
the range of source properties used in the literature. We investigate the
structure and propagation of the galatic ionization fronts by a visual
examination of our reionization maps. Within the progenitors we find that
reionization is patchy, and proceeds locally inside out. The process becomes
patchier with decreasing source photon output. It is generally dominated by one
major HII region and 1-4 additional isolated smaller bubbles, which eventually
overlap. Higher emissivity results in faster and earlier local reionization. In
all models, the reionization of the Milky Way and M31 are similar in duration,
i.e. between 203 Myr and 22 Myr depending on the source model, placing their
zreion between 8.4 and 13.7. In all models except the most extreme, the MW and
M31 progenitors reionize internally, ignoring each other, despite being
relatively close to each other even during the epoch of reionization. Only in
the case of strong supernova feedback suppressing star formation in haloes less
massive than 10^9 M_sun, and using our highest emissivity, we find that the MW
is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl
Vast planes of satellites in a high resolution simulation of the Local Group: comparison to Andromeda
We search for vast planes of satellites (VPoS) in a high resolution
simulation of the Local Group performed by the CLUES project, which improves
significantly the resolution of former similar studies. We use a simple method
for detecting planar configurations of satellites, and validate it on the known
plane of M31. We implement a range of prescriptions for modelling the satellite
populations, roughly reproducing the variety of recipes used in the literature,
and investigate the occurence and properties of planar structures in these
populations. The structure of the simulated satellite systems is strongly
non-random and contains planes of satellites, predominantly co-rotating, with,
in some cases, sizes comparable to the plane observed in M31 by Ibata et al..
However the latter is slightly richer in satellites, slightly thinner and has
stronger co-rotation, which makes it stand out as overall more exceptional than
the simulated planes, when compared to a random population. Although the
simulated planes we find are generally dominated by one real structure, forming
its backbone, they are also partly fortuitous and are thus not kinematically
coherent structures as a whole. Provided that the simulated and observed planes
of satellites are indeed of the same nature, our results suggest that the VPoS
of M31 is not a coherent disc and that one third to one half of its satellites
must have large proper motions perpendicular to the plane
Where Are the Baryons? II: Feedback Effects
Numerical simulations of the intergalactic medium have shown that at the
present epoch a significant fraction (40-50%) of the baryonic component should
be found in the (T~10^6K) Warm-Hot Intergalactic Medium (WHIM) - with several
recent observational lines of evidence indicating the validity of the
prediction. We here recompute the evolution of the WHIM with the following
major improvements: (1) galactic superwind feedback processes from galaxy/star
formation are explicitly included; (2) major metal species (O V to O IX) are
computed explicitly in a non-equilibrium way; (3) mass and spatial dynamic
ranges are larger by a factor of 8 and 2, respectively, than in our previous
simulations. Here are the major findings: (1) galactic superwinds have dramatic
effects, increasing the WHIM mass fraction by about 20%, primarily through
heating up warm gas near galaxies with density 10^{1.5}-10^4 times the mean
density. (2) the fraction of baryons in WHIM is increased modestly from the
earlier work but is ~40-50%. (3) the gas density of the WHIM is broadly peaked
at a density 10-20 times the mean density, ranging from underdense regions to
regions that are overdense by 10^3-10^4. (4) the median metallicity of the WHIM
is 0.18 Zsun for oxygen with 50% and 90% intervals being (0.040,0.38) and
(0.0017,0.83).Comment: 44 pages, 17 figures, high res version at
http://www.astro.princeton.edu/~cen/baryonII.ps.g
Validity of silhouette showcards as a measure of body size and obesity in a population in the African region : a practical research tool for general-purpose surveys.
BACKGROUND: The purpose of this study is to validate the Pulvers silhouette showcard as a measure of weight status in a population in the African region. This tool is particularly beneficial when scarce resources do not allow for direct anthropometric measurements due to limited survey time or lack of measurement technology in face-to-face general-purpose surveys or in mailed, online, or mobile device-based surveys.
METHODS: A cross-sectional study was conducted in the Republic of Seychelles with a sample of 1240 adults. We compared self-reported body sizes measured by Pulvers' silhouette showcards to four measurements of body size and adiposity: body mass index (BMI), body fat percent measured, waist circumference, and waist to height ratio. The accuracy of silhouettes as an obesity indicator was examined using sex-specific receiver operator curve (ROC) analysis and the reliability of this tool to detect socioeconomic gradients in obesity was compared to BMI-based measurements.
RESULTS: Our study supports silhouette body size showcards as a valid and reliable survey tool to measure self-reported body size and adiposity in an African population. The mean correlation coefficients of self-reported silhouettes with measured BMI were 0.80 in men and 0.81 in women (P < 0.001). The silhouette showcards also showed high accuracy for detecting obesity as per a BMI ≥ 30 (Area under curve, AUC: 0.91/0.89, SE: 0.01), which was comparable to other measured adiposity indicators: fat percent (AUC: 0.94/0.94, SE: 0.01), waist circumference (AUC: 0.95/0.94, SE: 0.01), and waist to height ratio (AUC: 0.95/0.94, SE: 0.01) amongst men and women, respectively. The use of silhouettes in detecting obesity differences among different socioeconomic groups resulted in similar magnitude, direction, and significance of association between obesity and socioeconomic status as when using measured BMI.
CONCLUSIONS: This study highlights the validity and reliability of silhouettes as a survey tool for measuring obesity in a population in the African region. The ease of use and cost-effectiveness of this tool makes it an attractive alternative to measured BMI in the design of non-face-to-face online- or mobile device-based surveys as well as in-person general-purpose surveys of obesity in social sciences, where limited resources do not allow for direct anthropometric measurements
Intercomparision of Monte Carlo radiation transport codes MCNPX, GEANT4, and FLUKA for simulating proton radiotherapy of the eye
Monte Carlo simulations of an ocular treatment beam- line consisting of a nozzle and a water phantom were carried out using MCNPX, GEANT4, and FLUKA to compare the dosimetric accuracy and the simulation efficiency of the codes. Simulated central axis percent depth- dose profiles and cross-field dose profiles were compared with experimentally measured data for the comparison. Simulation speed was evaluated by comparing the number of proton histories simulated per second using each code. The results indicate that all the Monte Carlo transport codes calculate sufficiently accurate proton dose distributions in the eye and that the FLUKA transport code has the highest simulation efficiency
A review of modelling and optimisation methods applied to railways energy consumption
[EN] Railways are a rather efficient transport mean, and yet there is increasing interest in reducing their energy consumption and making them more sustainable in the current context of climate change. Many studies try to model, analyse and optimise the energy consumed by railways, and there is a wide diversity of methods, techniques and approaches regarding how to formulate and solve this problem. This paper aims to provide insight into this topic by reviewing up to 52 papers related to railways energy consumption. Two main areas are analysed: modelling techniques used to simulate train(s) movement and energy consumption, and optimisation methods used to achieve more efficient train circulations in railway networks. The most used methods in each case are briefly described and the main trends found are analysed. Furthermore, a statistical study has been carried out to recognise relationships between methods and optimisation variables. It was found that deterministic models based on the Davis equation are by far (85% of the papers reviewed) the most common in terms of modelling. As for optimisation, meta-heuristic methods are the preferred choice (57.8%), particularly Genetic Algorithms.Martínez Fernández, P.; Villalba Sanchis, I.; Yepes, V.; Insa Franco, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production. 222:153-162. https://doi.org/10.1016/j.jclepro.2019.03.037S15316222
High-Redshift Galaxies in Cold Dark Matter Models
We use hydrodynamic cosmological simulations to predict the star formation
properties of high-redshift galaxies (z=2-6) in five variants of the
inflationary cold dark matter scenario, paying particular attention to z=3, the
redshift of the largest "Lyman-break galaxy" (LBG) samples. Because we link the
star formation timescale to the local gas density, the rate at which a galaxy
forms stars is governed mainly by the rate at which it accretes cooled gas from
the surrounding medium. At z=3, star formation in most of the simulated
galaxies is steady on 200 Myr timescales, and the instantaneous star formation
rate (SFR) is correlated with total stellar mass. However, there is enough
scatter in this correlation that a sample selected above a given SFR threshold
may contain galaxies with a fairly wide range of masses. The redshift history
and global density of star formation in the simulations depend mainly on the
amplitude of mass fluctuations in the underlying cosmological model. The three
models whose mass fluctuation amplitudes agree with recent analyses of the
Lyman-alpha forest also reproduce the observed luminosity function of LBGs
reasonably well, though the dynamic range of the comparison is small and the
theoretical and observational uncertainties are large. The models with higher
and lower amplitudes appear to predict too much and too little star formation,
respectively, though they are not clearly ruled out. The intermediate amplitude
models predict SFR ~ 30-40 Msun/yr for galaxies with a surface density 1 per
arcmin^2 per unit redshift at z=3. They predict much higher surface densities
at lower SFR, and significant numbers of galaxies with SFR > 10 Msun/yr at z >=
5.Comment: Submitted to ApJ. 31 pages including 10 ps figures. Full resolution
version of Fig 2 available at
http://www.astronomy.ohio-state.edu/~dhw/Sph/zgal.fig2.ps.g
Hot Topics in Ultra-Peripheral Collisions
Ultra-peripheral collisions of relativistic heavy ions involve long-ranged
electromagnetic interactions at impact parameters too large for hadronic
interactions to occur. The nuclear charges are large; with the coherent
enhancement, the cross sections are also large. Many types of photonuclear and
purely electromagnetic interactions are possible. We present here an
introduction to ultra-peripheral collisions, and present four of the most
compelling physics topics. This note developed from a discussion at a workshop
on ``Electromagnetic Probes of Fundamental Physics,'' in Erice, Italy, Oct.
16-21, 2001.Comment: 7 pages, with 3 figures. This developed from a discussion at the
workshop on "Electromagnetic Probes of Fundamental Physics," Oct. 16-21,
Erice, Ital
- …