396 research outputs found

    Investigation of unconventional reconstruction and electronic properties on the Na2IrO3 surface

    Full text link
    Na2IrO3 is an intriguing material for which spin-orbit coupling plays a key role. Theoretical predictions, so far unverified, have been made that the surface of Na2IrO3 should exhibit a clear signature of the quantum spin Hall effect. We studied the surface of Na2IrO3 using scanning tunneling microscopy and density-functional theory calculations. We observed atomic level resolution of the surface and two types of terminations with different surface periodicity and Na content. By comparing bias-dependent experimental topographic images to simulated images, we determined the detailed atomistic structure of both observed surfaces. One of these reveals a strong relaxation to the surface of Na atoms from the subsurface region two atomic layers below. Such dramatic structural changes at the surface cast doubt on any prediction of surface properties based on bulk electronic structure. Indeed, using spatially resolved tunneling spectroscopy we found no indication of the predicted quantum spin Hall behavior

    Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study

    Get PDF
    We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states

    Finger somatotopy is preserved after tetraplegia but deteriorates over time

    Get PDF
    Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study, we used functional MRI and a (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in the absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g. neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI

    Concurrent adaptation to opposing visual displacements during an alternating movement.

    Get PDF
    It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513–519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms

    On the Connection of Anisotropic Conductivity to Tip Induced Space Charge Layers in Scanning Tunneling Spectroscopy of p-doped GaAs

    Full text link
    The electronic properties of shallow acceptors in p-doped GaAs{110} are investigated with scanning tunneling microscopy at low temperature. Shallow acceptors are known to exhibit distinct triangular contrasts in STM images for certain bias voltages. Spatially resolved I(V)-spectroscopy is performed to identify their energetic origin and behavior. A crucial parameter - the STM tip's work function - is determined experimentally. The voltage dependent potential configuration and band bending situation is derived. Ways to validate the calculations with the experiment are discussed. Differential conductivity maps reveal that the triangular contrasts are only observed with a depletion layer present under the STM tip. The tunnel process leading to the anisotropic contrasts calls for electrons to tunnel through vacuum gap and a finite region in the semiconductor.Comment: 11 pages, 8 figure

    Surface resonance of the (2×\times1) reconstructed lanthanum hexaboride (001)-cleavage plane: a combined STM and DFT study

    Get PDF
    We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6_\text{6}) using scanning tunneling microscopy (STM) and density functional theory (DFT). Experimentally, we found a (2×\times1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinth-like pattern. These findings are supported by low-energy electron diffraction (LEED) experiments. Slab calculations within the framework of DFT shows that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy (STS) shows a prominent spectral feature at -0.6 eV. Using DFT, we identify this structure as a surface resonance of the (2×\times1) reconstructed LaB6_\text{6} (100)-surface which is dominated by boron dangling bond-states and lanthanum d-states.Comment: 10 pages, 16 figure

    Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface

    Full text link
    The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is investigated by scanning tunneling microscopy (STM). Single B acceptors are identified due to their characteristic voltage-dependent contrast which is explained by a local energetic shift of the electronic density of states caused by the Coulomb potential of the negatively charged acceptor. In addition, detailed analysis of the STM images shows that apparently one orbital is missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the absence of a localized dangling-bond state. Scanning tunneling spectroscopy confirms a strongly altered density of states at the B atom due to the different electronic structure of B compared to Si.Comment: 6 pages, 7 figure

    Surface analysis of the PrB6 (001) cleavage plane by scanning tunneling microscopy and spectroscopy

    Get PDF
    Scanning tunneling microscopy and spectroscopy were performed on the (001) cleavage plane of praseodymium hexaboride (PrB6). We found three different ordered morphologies, namely, a chainlike (2 × 1) reconstruction and two uniform terminations. The chainlike (2 × 1) reconstruction is rationalized as parallel Pr rows on top of a complete B6 network. The two uniform terminations are identified as complete Pr or B6 layers. Although the uniform terminations could be expected to be simply (1 × 1) reconstructed, one of them shows a rather stripelike atomic corrugation for close tip-sample distances. All morphologies share two spectral features at −0.2 and +0.2 eV around EF. In addition, one uniform termination shows an additional peak in the differential conductance at −0.7 eV. Similarly, the chainlike (2 × 1) reconstruction reveals a feature in the differential conductance at −1.1 eV when moving the tip closer to the surface. The distance dependency points towards rather localized electronic states, which we tentatively attribute to a 4 f -related feature

    Effects on orientation perception of manipulating the spatio–temporal prior probability of stimuli

    Get PDF
    Spatial and temporal regularities commonly exist in natural visual scenes. The knowledge of the probability structure of these regularities is likely to be informative for an efficient visual system. Here we explored how manipulating the spatio–temporal prior probability of stimuli affects human orientation perception. Stimulus sequences comprised four collinear bars (predictors) which appeared successively towards the foveal region, followed by a target bar with the same or different orientation. Subjects' orientation perception of the foveal target was biased towards the orientation of the predictors when presented in a highly ordered and predictable sequence. The discrimination thresholds were significantly elevated in proportion to increasing prior probabilities of the predictors. Breaking this sequence, by randomising presentation order or presentation duration, decreased the thresholds. These psychophysical observations are consistent with a Bayesian model, suggesting that a predictable spatio–temporal stimulus structure and an increased probability of collinear trials are associated with the increasing prior expectation of collinear events. Our results suggest that statistical spatio–temporal stimulus regularities are effectively integrated by human visual cortex over a range of spatial and temporal positions, thereby systematically affecting perception
    corecore