16,973 research outputs found

    Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Get PDF
    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions

    Spectrum of turbulent Kelvin-waves cascade in superfluid helium

    Full text link
    To explain the observed decay of superfluid turbulence at very low temperature, it has been proposed that a cascade of Kelvin waves (analogous to the classical Kolmogorov cascade) transfers kinetic energy to length scales which are small enough that sound can be radiated away. We report results of numerical simulations of the interaction of quantized vortex filaments. We observe the development of the Kelvin-waves cascade, and compute the statistics of the curvature, the amplitude spectrum (which we compare with competing theories) and the fractal dimension.Comment: 32 pages, 22 figure

    Vibrations of a Columnar Vortex in a Trapped Bose-Einstein Condensate

    Get PDF
    We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an oblate trap and in the absence of longitudinal trapping our results are consistent with previous work. We show that the derived Kelvin wave dispersion in the general case is in quantitative agreement with numerical calculations of the Bogoliubov spectrum and offer a significant improvement upon previous analytical work.Comment: 5 pages with 1 figur

    Reduced healthcare utilisation following successful HCV treatment in HIV co-infected patients with mild liver disease

    Get PDF
    New direct-acting antivirals (DAA) for hepatitis C virus (HCV) infection have achieved high cure rates in many patient groups previously considered difficult-to-treat, including those HIV/HCV co-infected. The high price of these medications is likely to limit access to treatment, at least in the short term. Early treatment priority is likely to be given to those with advanced disease, but a more detailed understanding of the potential benefits in treating those with mild disease is needed. We hypothesized that successful HCV treatment within a co-infected population with mild liver disease would lead to a reduction in the use and costs of healthcare services in the 5 years following treatment completion. We performed a retrospective cohort study of HIV/HCV-co-infected patients without evidence of fibrosis/cirrhosis who received a course of HCV therapy between 2004 and 2013. Detailed analysis of healthcare utilization up to 5 years following treatment for each patient using clinical and electronic records was used to estimate healthcare costs. Sixty-three patients were investigated, of whom 48 of 63 (76.2%) achieved sustained virological response 12 weeks following completion of therapy (SVR12). Individuals achieving SVR12 incurred lower health utilization costs (£5000 per-patient) compared to (£10 775 per-patient) non-SVR patients in the 5 years after treatment. Healthcare utilization rates and costs in the immediate 5 years following treatment were significantly higher in co-infected patients with mild disease that failed to achieve SVR12. These data suggest additional value to achieving cure beyond the prevention of complications of disease

    Perturbative behaviour of a vortex in a trapped Bose-Einstein condensate

    Get PDF
    We derive a set of equations that describe the shape and behaviour of a single perturbed vortex line in a Bose-Einstein condensate. Through the use of a matched asymptotic expansion and a unique coordinate transform a relation for a vortex's velocity, anywhere along the line, is found in terms of the trapping, rotation, and distortion of the line at that location. This relation is then used to find a set of differential equations that give the line's specific shape and motion. This work corrects a previous similar derivation by Anatoly A. Svidzinsky and Alexander L. Fetter [Phys. Rev. A \textbf{62}, 063617 (2000)], and enables a comparison with recent numerical results.Comment: 12 pages with 3 figure

    Quantifying extreme behaviour in geomagnetic activity

    Get PDF
    Understanding the extremes in geomagnetic activity is an important component in understanding just how severe conditions can become in the terrestrial space environment. Extreme activity also has consequences for technological systems. On the ground, extreme geomagnetic behavior has an impact on navigation and position accuracy and the operation of power grids and pipeline networks. We therefore use a number of decades of one-minute mean magnetic data from magnetic observatories in Europe, together with the technique of extreme value statistics, to provide a preliminary exploration of the extremes in magnetic field variations and their one-minute rates of change. These extremes are expressed in terms of the variations that might be observed every 100 and 200 years in the horizontal strength and in the declination of the field. We find that both measured and extrapolated extreme values generally increase with geomagnetic latitude (as might be expected), though there is a marked maximum in estimated extreme levels between about 53 and 62 degrees north. At typical midlatitude European observatories (55–60 degrees geomagnetic latitude), compass variations may reach approximately 3–8 degrees/minute, and horizontal field changes may reach 1000–4000 nT/minute, in one magnetic storm once every 100 years. For storm return periods of 200 years the equivalent figures are 4–11 degrees/minute and 1000–6000 nT/minute

    Remote sensing in Iowa agriculture: Identification and classification of Iowa's crops, soils and forestry resources using ERTS-1 and complimentary underflight imagery

    Get PDF
    The author has identified the following significant results. Springtime ERTS-1 imagery covering pre-selected test sites in Iowa showed considerable detail with respect to broad soil and land use patterns. Additional imagery has been incorporated into a state mosaic. The mosaic was used as a base for soil association lines transferred from an existing map. The regions of greatest contrast are between the Clarion-Nicollet-Webster soil association area and adjacent areas. Landscape characteristics in this area result in land use patterns with a high percentage of pasture, hay, and timber. The soil association areas of the state that have patterns interpreted to be associated with intensive row crop production are: Moody, Galva-Primghar-Sac, Clarion-Nicollet-Webter, Tama-Muscatine, Dinsdale-Tama, Cresco-Lourdes, Clyde, Kenyon-Floyd-Clyde, and the Luton-Onawa-Salix area on the Missouri River floodplain. Forestland estimates have been attained for an area in central Iowa using wintertime ERTS-1 imagery. Visual analysis of multispectral, temporal imagery indicates that temporal analysis for cropland identification and acreage analyses procedures may be a very useful tool. Combinations of wintertime, springtime, and summertime ERTS-1 imagery separate most vegetation types. Timing can be critical depending upon crop development and harvesting times because of the dynamic nature of agricultural production

    The British Labor Government’s Industrial Relations Program

    Get PDF
    • …
    corecore