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Vibrations of a columnar vortex in a trapped Bose-Einstein condensate
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We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate,
in a rotating cylindrically symmetric parabolic trap, where it is assumed that the shape of the vortex line is
dominated by the properties of the condensate at the center of the trap. From this solution the Kelvin wave
dispersion relation is determined. In the limit of an oblate trap and in the absence of longitudinal trapping our
results are consistent with previous work. We show that the derived Kelvin wave dispersion in the general case
is in quantitative agreement with numerical calculations of the Bogoliubov spectrum.
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I. INTRODUCTION

The behaviors of turbulent flows, tornadoes, mixing pro-
cesses, synoptic-scale weather phenomena, and sunspots all
critically depend on our understanding of vortex dynamics.
Quantitative investigation of vortices started in the mid-1800s
with the development of the Navier-Stokes equation, with
the properties of a vortex being described by streamlines of
vorticity. In 1880, Thomson (Lord Kelvin) determined the
dispersion relation [1] for a specific excitation on a vortex
line. This excitation takes the form of a chiral normal mode
in which the perturbation propagates along a vortex line and
rotates about its unperturbed position, distorting the vortex line
into a helical shape.

In superfluids these vortices differ from their classical
counterparts by having quantized circulation and a single
line of vorticity (a vortex line) associated with them [2].
A quantized vortex line, in analogy with a classical vor-
tex, supports Kelvin waves [2–11]. The first experimental
investigations of Kelvin waves, in a superfluid, were carried
out in cryogenically cooled helium [2–4,6]. More recently
Bose-Einstein condensates (BECs) have provided a new
platform to investigate the properties of quantized vortices
[12–19]. The highly controllable nature of BEC systems has
enabled the experimental investigation of Kelvin waves on a
single vortex line [9]. The behavior of such waves has been
investigated [20–22] and plays a crucial role in understanding
the details of superfluid turbulence [23–25]. In trapped systems
the Kelvin wave dispersion for a single vortex line has been
obtained numerically, via solving the Bogoliubov spectrum for
a single vortex line [21,22,26]. The Kelvin wave dispersion
relation in the limit of long wavelengths and in the absence of
trapping is [5]

ω = h̄k2

2M
ln

(
1

|k|rc

)
, (1)

where ω is the excitation frequency of the mode, k is the wave
number, M is the particle mass, and rc, typically of the order
of the healing length, is the vortex-core parameter.

A general formulation for a quantized vortex line in a
trapped rotating BEC has proven difficult. Most methods have
relied on matched asymptotic expansions [27–31]. Koens and
Martin used such a procedure to obtain a set of equations that

describe the behavior of a perturbed vortex line [29]. In this
analysis the general equations [Eqs. (68) and (69) in Ref. [29]]
contained an undetermined functional. Here we eliminate the
functional to obtain a single equation that describes the radial
position of a vortex line, supporting a Kelvin wave. We then
determine the general solutions of this equation, enabling us to
make favorable comparisons with previous results in limiting
regimes [29,31–34]. From the general solution the Kelvin wave
dispersion relation, for a single vortex line in a BEC in a
cylindrically symmetric parabolic trap, is determined. This
dispersion quantitatively agrees with numerically calculated
Bogoliubov spectra [22], in contrast to previous analytic results
[30].

II. THEORY

As shown in Ref. [29] the equations governing the po-
sitional dependence of the vortex line can be obtained. In
cylindrical coordinates, defined by the radial ρ̂, angular φ̂, and
axial ẑ unit vectors, these equations are
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where ρ and φ describe the radial and angular coordinates of
the vortex line at a given z (the dependence on z is implicit),
Vtr is the trapping potential, |�T F |2 is the Thomas-Fermi
condensate density, g is the interparticle interaction strength,
R⊥ is the radial Thomas-Fermi radius, � is the rotation
frequency of the trap, and E is an unknown function that
depends on the structure of the vortex line. Previous work
has determined E by considering the case where the trapping
and curving dependence in E can be treated separately; see
Sec. VII of Ref. [29]. Specifically, two different scenarios
were considered: one indicating a straight vortex’s reaction
to the trap confinement and one describing the behavior of
wave perturbations on the line in the absence of confinement.
Equations (2) and (3) were derived by noting that BECs
with vortices within them have two natural length scales:
the condensate length scale and the vortex-core radius. The
full behavior of the system was then determined from the
behavior of the condensate near to and far from the vortex
core, via asymptotic expansion, separately, and ensuring that
these two solutions matched in the overlapping region. In
performing such an analysis to determine Eqs. (2) and (3)
several approximations have been made. First, the wavelength
of the excitation of the vortex line must be large, as it has to
be a small perturbation from the central straight-line vortex.
Second, for the poles of the condensate the derivation is
invalidated as the radial size of the condensate becomes similar
to the perturbation size (or the vortex-core size).

In general, Eqs. (2) and (3) relate the motion of the vortex
line [left-hand sides (LHSs) of Eqs. (2) and (3)] to its distortion
and coupling to the trapping potential [right-hand sides (RHSs)
of Eqs. (2) and (3)]. E provides coupling between the motion
of the vortex line and the trapping potential in the z direction
and therefore affect the first terms on the RHSs of Eqs. (2)
and (3). Due to the unbalanced units of ln(rc) of the first terms
on the RHSs of Eqs. (2) and (3), E must take a form to balance
this. Hence, these terms can be eliminated from each equation.

III. RESULTS

In this work, we are interested in the properties of helical
waves in the presence of a harmonic trapping potential
Vtr (r⊥ = ρ,z) = Mω2

⊥ρ2/2 + Mω2
zz

2/2, where ω⊥ and ωz

are the trapping frequencies in the ρ and z directions,
respectively. Classically helical waves have φ structure of the
form φ = kz − ωt . Assuming that φ has the same structure and
that ρ is time independent, the governing equation becomes[
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where � = − ln(rc

√
k2 − ∂2

z ρ/ρ)/2. The LHS of Eq. (4)
defines the properties of a vortex line when ρ is constant.
The first of the terms on the RHS contains the influence from
z confinement and the other two represent the influence the
curving of the vortex line in the radial direction has on its
motion in φ and ρ, respectively.

Equation (4) does not admit an analytic solution in a closed
form. However, by assuming that (i) ∂2

z ρ/ρ is small compared
to k2 and may be approximated by β and (ii) taking the effect
of g|�T F |2 to be a constant, to leading order, defined by
the condensate chemical potential μ = g|�T F (0,0)|2, Eq. (4)
reduces to

γρ ′2 = −z′ρ ′ ∂ρ
′

∂z′ + ζρ ′ ∂
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(
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where ζ = − ln(k̃2 − β̃)/4, with k̃ = rck, β̃ = r2
c β, and ε =

1 + 2ζ . In Eq. (5) z′ = z/Rz, with Rz being the axial Thomas-
Fermi radius, ρ ′ = ρ/rc,

γ = 2/5[�̃ − ω̃] + k̃2ζ2/5 − 3

10λ2
ln , (6)

where  = 15aNh̄2

M2λ4ω2
⊥r5

c

parametrizes the interactions, with a

being the s-wave scattering length and N the number of
particles in the condensate, and λ = ωz/ω⊥. �̃ = Mr2

c �/h̄

and ω̃ = Mr2
c ω/h̄ are the dimensionless trap rotation and

Kelvin wave frequency, respectively. The two assumptions
made imply that (i) the curvature in the z direction of the
radial displacement of the vortex line is much smaller than the
wave number and (ii) the condensate density is considered to
be locally homogeneous. For the second assumption, although
the condensate density is taken to be a constant where it was
explicitly written in Eq. (4), this does not discard its influence.
In the derivation of Eqs. (2) and (3) the influence of the
changing condensate density is included. Specifically, it was
assumed to have a Thomas-Fermi profile which can be written
as the central chemical potential minus the trapping potential.
Similarly, in Eq. (4) it is possible to express |�T F |2 in terms of
the chemical and trapping potentials. Hence where gradients
of the profile are involved |�T F |2 is replaced with gradients of
the trapping potential. Since Eqs. (2) and (3) are most accurate
away from the edges of the condensate it is thereby reasonable
to assume that the reciprocal of |�T F |2 is close to constant.

Making a change of variables such that ρ ′(z′) has the form
f (z′)ζ/(ε−ζ ) Eq. (5) reduces to

γ (ζ − ε)f (z′) + ζ

[
z′ df (z′)

dz′ − ζ
d2f (z′)

dz′2

]
= 0, (7)

with the continuum-limit solution

ρ ′(z′) =
[
C1 HA

(
z′

√
2ζ

)
+ C2 1F1

(
−A

2
;

1

2
;
z′2

2ζ

)]−ζ/(1+ζ )

,

(8)

where A = γ (ε − ζ )/ζ , Hp(z) is the Hermite polynomial of
order p, 1F1(l; m; x) is the Kummer confluent hypergeometric
function, and C1 and C2 are integration constants.

Equation (8) is the central result of this paper. As such it is
prudent to reconsider its regimes of validity. Specifically, this
solution is for the radial position of the vortex as a function
of z′, in a cylindrically symmetric parabolic trap. In obtaining
this solution several approximations have been made, specifi-
cally as follows:

(a) The original governing equations (2) and (3) are derived
from the behavior of the condensate near to and far from
the vortex core, via asymptotic expansion, separately, and
ensuring that these two solutions matched in the overlapping
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region. This imposes the conditions that the wavelength of
the excitation of the vortex line must be large, as it has to
be a small perturbation from the central straight-line vortex.
Additionally, for the “top” and “bottom” of the condensate
the governing equations are poor, as the radial size of the
condensate becomes similar to the perturbation size.

(b) In determining Eq. (4) a specific form for the
trapping potential was assumed: a cylindrically symmetric
parabolic potential. Additionally, a specific structure for the
vortex-line excitation was assumed: φ = kz − ωt . This im-
poses the constraint on the solution that k is uniform through-
out the condensate. Numerical simulations show this not to be
true [22]; however, this assumption implies that the properties
of the vortex line are primarily governed by the properties
of the center of the condensate, where the density profile is
approximately constant.

(c) To obtain Eq. (5) it was assumed that the curvature in
the z direction of the radial displacement of the vortex line
is much smaller than the wave number and the condensate
density is considered to be locally, with respect to the vortex
line, homogeneous.

In summary these assumptions imply that Eq. (8) provides
a description for the vortex-line shape where it is assumed that
the shape is dominated by the properties of the condensate at
the center of the trap.

Because of the axisymmetry of the trapping potential, the
vortex-line structure described is physical when ρ ′ is not
multivalued within the condensate radius (z′ = ±1), and is
symmetric or antisymmetric across z′ = 0. Due to the use
of cylindrical coordinates and the φ = kz − wt ansatz Eq. (8)
cannot produce antisymmetric solutions. Equation (8) is single
valued and symmetric if C1 = 0, reducing the solution to the
symmetric hyper-geometric function, or if A is a positive
even integer, making HA(x) symmetric. In general there is
no physical reason to restrict A to be an integer; hence we
consider only the case where C1 = 0. This solution gives ρ ′ a
U shape, centered around z′ = 0; for example see Fig. 1(a).

From Eq. (8) it is possible to check the assumption
|β̃|/k̃2 � 1. At z′ = 0 this ratio is typically of order 10−7.
Nevertheless β̃ does depend on the ratio of the trapping
frequencies, λ, with β̃ → 0 as λ → ∞ and β̃ → −∞ as
λ → 0. The divergence in β̃ as λ → 0 is slow, indicating that β̃
plays a relatively insignificant role in Eq. (4) unless the trap is
extremely prolate. In general, we calculate β̃ self-consistently,
through the definition β̃ = r2

c ∂2
z ρ/ρ.

A. Oblate limit

Equation (8) simplifies in the limits of extremely oblate
(λ → ∞) and prolate (λ → 0) trapping potentials. In the
oblate limit, γ → 0, ζ → − ln(|k̃|)/2, and ε → 1 − ln(|k̃|),
Eq. (5) has the solution

ρ ′(z′) =
[
D1(1 + ζ )

√
2π

erf
(

iz′√
2ζ

)
i

+ 2
√

ζ D2

]−ζ/(1+ζ )

,

(9)

where D1 and D2 are again integration constants and erf(x)
is the error function. Applying the symmetry and divergence
conditions ρ ′ = (2

√
ζ D2)−ζ/(1+ζ ), if ρ ′ is finite, from Eq. (5)
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FIG. 1. (Color online) (a) The vortex-line shape in a prolate BEC,
as given by Eq. (12), for k̃ = 10−3 (black solid curve), k̃ = 10−2

(green dashed curve), and k̃ = 0.1 (red dash-dotted curve). We have
assumed R⊥/rc = 5,

√
A/ζ = π/2, F1 = 0.5, and F2 = 0. The thick

black solid line defines the Thomas-Fermi surface of the BEC.
(b),(c) The dispersion relations for Kelvin waves, for N = 104

(lower green realizations), N = 5 × 104 (middle red realizations),
and N = 5 × 105 (upper black realizations) rubidium atoms in a
harmonic trap: ω⊥ = 2π × 98.5 rad/s and ωz = 2π × 11.8 rad/s. In
(b) and (c) the numerical calculations (dots) [22] and analytic results
from Eq. (15) (solid curves) are plotted. In (c) the dashed curves show
previous analytic results [30]. For the solid curves and dashed curves
in (b) and (c) the following scaling parameters have been used for rc

and k: α = 0.134, 0.257, and 0.264 for N = 5 × 105, 5 × 104, and
104, respectively, and s = (λRz/lωz

)1/2 for all N .

the Kelvin wave has the frequency

ω2D = −3h̄ω2
⊥ ln(R⊥/rc)

4μ
− h̄k2 ln(rc

√
k2 − β)

2M
+ �. (10)

This is consistent with previous work [31,32] which shows
that an off-centered vortex in an oblate condensate is straight
and has a precession frequency � − 3h̄ω2

⊥ ln(R⊥/rc)/4μ, in
the limit k → 0.

B. Prolate limit

In the prolate limit (λ → 0), γ , ζ , and ε all tend to ∞.
Hence Eq. (5) becomes

ρ ′2 = ζ

γ
ρ ′ ∂

2ρ ′

∂z′2 − ε

γ

(
∂ρ ′

∂z′

)2

, (11)

with the solution

ρ ′(z′) = F1

{
cos

[
(z′ − ζ F2)

√
A

ζ

]}−ζ/(1+ζ )

. (12)
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Again ρ ′ has only a symmetric solution (F2 = 0). This causes
ρ ′ to have a 1/ cos(z)-like structure similar to that predicted in
simulations [33,34]. Typical solutions of Eq. (12) are plotted in
Fig. 1(a), demonstrating the U shape of the radial coordinate.
Furthermore, as − ζ

1+ζ
depends on k, this U shape will widen

as the momentum of the wave increases, as seen in Fig. 1(a).
At low k̃, the line takes an almost inverted cosine shape and
becomes straight as k̃ → 1.

To obtain the dispersion relation for the prolate case Eq. (12)
needs to be single valued within the condensate. This gives the
condition

√
A/ζ = π/2 or

ω = ω2D − h̄ω2
zπ

2ζ 2

8μ(1 + ζ )
, (13)

which is an approximation to the dispersion relation of helical
waves in a prolate trap, and is distinct from the solution for
ωz ≡ 0. This occurs because any trapping in z provides a scale
over which the vortex line can curve. Hence, when there is no
trapping in z, ε/γ = ζ/γ = 0, turning Eq. (5) into γρ ′2 = 0.
Therefore, for the case of ωz = 0 the dispersion relation is the
same as in the oblate limit, given by Eq. (10), i.e., the vortex
line is straight [29,31,32].

C. General solution

To determine the general dispersion relation from Eq. (8)
a similar treatment to that for the extremely prolate trap is
employed. As the ρ ′ solution is a hypergeometric function to
a negative power, the zeros of the hypergeometric function
must lie outside the condensate. The zeros of the confluent
hypergeometric function 1F1(l; m; x) can be approximated by
[35]

X0 ≈ π2
(
r + m

2 − 3
4

)2

2m − 4l
, (14)

where X0 is the approximate x value of the rth zero.
Combining Eq. (14) with the form of the hypergeometric
function in Eq. (8) and stipulating that the first zero is at z′ = 1
the dispersion relation becomes

ω = ω2D + h̄ω2
zζ (2 − π2ζ )

8μ(1 + ζ )
, (15)

or equivalently, for β/k2 → 0,

ω = ω0 + ω1 +
h̄k2 ln

(
1

rc |k|
)

2M
+ �, (16)

where

ω0 = −
3h̄ω2

⊥ ln(R⊥
rc

)

4μ
,

ω1 = −h̄ω2
z ln(rc|k|)[4 + π2 ln(rc|k|)]

16μ[2 − ln(rc|k|)] .

Equations (15) and (16) indicate that helical waves, in a
parabolic trap, obey the usual dispersion relation [Eq. (1)],
with two constants ω0, from confinement in ρ, and ω1, from
confinement in z. The form of ω0 matches that for extremely
oblate traps [Eq. (10)], while ω1 contains new behavior.
Essentially, ω1 is constant, with weak logarithmic dependence
on k, and becomes larger as ωz increases. As λ → ∞ Eq. (15)

does not replicate the dispersion in the oblate trapping limit.
This is because in the very oblate limit Eq. (14) fails to predict
the location of the zeros accurately.

IV. COMPARISON WITH BOGOLIUBOV SPECTRA

To test the validity of the above analysis we now compare
the solutions of Eq. (15) with numerical calculations [22]. The
dispersion relations of Kelvin waves in a prolate condensate
for different particle numbers corresponding to numerical
calculations [22] are shown in Figs. 1(b) and 1(c) (dots).
Previous analytic predictions in this limit [see Eq. (70) in
Ref. [30]] poorly replicated these results [dashed curves in
Fig. 1(c)].

To compare these numerical results with Eq. (15), rc needs
to first be considered. The core parameter rc, implicit in
Eq. (15), characterizes the vortex-core size. In a trapped
BEC the healing length ξ is of the order of the vortex-core
radius, which is a function of position. As such we define
the core parameter rc = αξ to be some fraction α of the
healing length averaged over the Thomas-Fermi volume:
ξ = (R2

⊥Rz/6aN )1/2. To compare with numerical results we
allow α to be a free parameter, of order 1.

In Figs. 1(b) and 1(c) (solid curves) we plot the Kelvin wave
dispersion, Eq. (15), where we have rescaled k → sk = ks .
Due to the inhomogeneity of the condensate we expect k

to vary spatially. As such this rescaling is motivated by the
observation [22] that in numerical calculations k varies along
the vortex line. Interestingly, we find that the matching between
analytical results and numerical calculations is optimized
for s = (λRz/lωz

)1/2, where lωz
= √

h̄/(mωz) is the harmonic
oscillator length in z.

Figure. 1(c) shows that Eq. (15) (solid curves) is much
closer to the numerical results than the previous analytic pre-
dictions (dashed curves) [30]. Previous calculations assumed
that the confinement in z strongly affected the precession
frequency while our analysis creates only a small correction.
This relates to the fact that Ref. [30] assumed that the influence
on the vortex precession of the trap was the same perpendicular
and parallel to the line’s direction. Our work shows that it
is still possible to solve the the problem without making
this simplification. As a result we find that the influence
on the vortex precession from the trap is not the same
perpendicular and parallel to the line’s direction. Additionally,
Fig. 1(b) shows excellent quantitative agreement between
the numerical and analytical results, with the agreement
improving as the number of particles increases and the BEC
becomes more Thomas-Fermi-like. The general features of the
dispersion relation are dominated by (i) a frequency shift and
(ii) a functional form proportional to −k2 ln rck. The shift is
dominated by the confinement in ρ, given by ω0, with a small
contribution from the confinement in z, given by the second
term in Eq. (15). The functional dependence of ω is essentially
dominated by the solution for a vortex line in an untrapped
condensate, Eq. (1), also with a small correction arising from
the confinement in z, given by the second term in Eq. (15).
We note that, in the context of Fig. 1, the self-consistent
determination of β influences the dispersion only for k < 10−4

μm−1 and hence, in Figs. 1(b) and 1(c), plays no role over the
wave vectors considered.
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V. CONCLUSIONS

In summary, we have analytically determined the Kelvin
wave dispersion relation for a vortex line in a BEC trapped
in a cylindrically symmetric parabolic trap, Eq. (15), where it
is assumed that the shape of the vortex line is dominated by
the properties of the condensate at the center of the trap. This
result quantitatively agrees with the numerical calculations,
in contrast to previous descriptions. We also find that the
dispersion relation in the oblate trapping limit, Eq. (10),
coincides with previous analytical work. In general these
results are derived from the governing equation of motion for

Kelvin waves on a quantized vortex line, Eq. (5). Equation (5)
successfully predicts the behavior in very oblate and prolate
condensates, and mathematically shows the link between the
vortex-line shape with no trapping in z and strong trapping in
z. Within the context of experimental activity in the study
of excitations of quantized vortex lines in trapped BECs
[9,15,36,37], this work provides a simple analytic tool for
the analysis of Kelvin waves. Additionally, given the close
agreement between numerical calculations and Eq. (15), we
expect future experimental measurements of the Kelvin wave
spectra to be in close agreement with our analytical description.
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