409 research outputs found
An information-bearing seed for nucleating algorithmic self-assembly
Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. These phenomena can be exploited to program the growth of complex supramolecular structures, as demonstrated by the algorithmic self-assembly of DNA tiles. However, the lack of effective seeds has limited the reliability and yield of algorithmic crystals. Here, we present a programmable DNA origami seed that can display up to 32 distinct binding sites and demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the simplest case, the starting materials are a set of tiles that can form crystalline ribbons of any width; the seed directs assembly of a chosen width with >90% yield. Increased structural diversity is obtained by using tiles that copy a binary string from layer to layer; the seed specifies the initial string and triggers growth under near-optimal conditions where the bit copying error rate is 17 kb of sequence information. In sum, this work demonstrates how DNA origami seeds enable the easy, high-yield, low-error-rate growth of algorithmic crystals as a route toward programmable bottom-up fabrication
Self-assembly, modularity and physical complexity
We present a quantitative measure of physical complexity, based on the amount
of information required to build a given physical structure through
self-assembly. Our procedure can be adapted to any given geometry, and thus to
any given type of physical system. We illustrate our approach using
self-assembling polyominoes, and demonstrate the breadth of its potential
applications by quantifying the physical complexity of molecules and protein
complexes. This measure is particularly well suited for the detection of
symmetry and modularity in the underlying structure, and allows for a
quantitative definition of structural modularity. Furthermore we use our
approach to show that symmetric and modular structures are favoured in
biological self-assembly, for example of protein complexes. Lastly, we also
introduce the notions of joint, mutual and conditional complexity, which
provide a useful distance measure between physical structures.Comment: 9 pages, submitted for publicatio
Random, blocky and alternating ordering in supramolecular polymers of chemically bidisperse monomers
As a first step to understanding the role of molecular or chemical
polydispersity in self-assembly, we put forward a coarse-grained model that
describes the spontaneous formation of quasi-linear polymers in solutions
containing two self-assembling species. Our theoretical framework is based on a
two-component self-assembled Ising model in which the bidispersity is
parameterized in terms of the strengths of the binding free energies that
depend on the monomer species involved in the pairing interaction. Depending
upon the relative values of the binding free energies involved, different
morphologies of assemblies that include both components are formed, exhibiting
paramagnetic-, ferromagnetic- or anti ferromagnetic-like order,i.e., random,
blocky or alternating ordering of the two components in the assemblies.
Analyzing the model for the case of ferromagnetic ordering, which is of most
practical interest, we find that the transition from conditions of minimal
assembly to those characterized by strong polymerization can be described by a
critical concentration that depends on the concentration ratio of the two
species. Interestingly, the distribution of monomers in the assemblies is
different from that in the original distribution, i.e., the ratio of the
concentrations of the two components put into the system. The monomers with a
smaller binding free energy are more abundant in short assemblies and monomers
with a larger binding affinity are more abundant in longer assemblies. Under
certain conditions the two components congregate into separate supramolecular
polymeric species and in that sense phase separate. We find strong deviations
from the expected growth law for supramolecular polymers even for modest
amounts of a second component, provided it is chemically sufficiently distinct
from the main one.Comment: Submitted to Macromolecules, 6 figures. arXiv admin note: substantial
text overlap with arXiv:1111.176
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
Excitonic AND Logic Gates on DNA Brick Nanobreadboards
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems
Adjustable Ellipsoid Nanoparticles Assembled from Re-engineered Connectors of the Bacteriophage Phi29 DNA Packaging Motor
A 24 x 30 nm ellipsoid nanoparticle containing 84 subunits or 7 dodecamers of the re-engineered core protein of the bacteriophage phi29 DNA packaging motor was constructed. Homogeneous nanoparticles were obtained with simple one-step purification. Electron microscopy and analytical ultracentrifugation were employed to elucidate the structure, shape, size, and mechanism of assembly. The formation of this structure was mediated and stabilized by N-terminal peptide extensions. Reversal of the 84-subunit ellipsoid nanoparticle to its dodecamer subunit was controlled by the cleavage of the extended N-terminal peptide with a protease. The 84 outward-oriented C-termini were conjugated with a streptavidin binding peptide which can be used for the incorporation of markers. This further extends the application of this nanoparticle to pathogen detection and disease diagnosis by signal enhancement
Placement and orientation of individual DNA shapes on lithographically patterned surfaces
Artificial DNA nanostructures show promise for the organization of functional materials to create nanoelectronic or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO_2 and diamond-like carbon. In buffer with ~ 100 mM MgCl_2, DNA origami bind with high selectivity and good orientation: 70–95% of sites have individual origami aligned with an angular dispersion (±1 s.d.) as low as ±10° (on diamond-like carbon) or ±20° (on SiO_2)
Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes
To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity
- …