3,763 research outputs found

    A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets

    Get PDF
    We present a targeted search for narrow-band (< 5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T_eq > 230 K, stars with 5 or more detected candidates or stars with a super-Earth (R_p 50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between Feb--Apr 2011 and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1-2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 x 10^21 erg s^-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be < 10^-6 M_solar^-1. Here we describe our observations, data reduction procedures and results.Comment: Accepted to the Astrophysical Journa

    FIRES: Fast Imaging and 3D Reconstruction of Archaeological Sherds

    Get PDF
    Sherds, as the most common artifacts uncovered during archaeologicalexcavations, carry rich information about past human societies so need to beaccurately reconstructed and recorded digitally for analysis and preservation.Often hundreds of fragments are uncovered in a day at an archaeologicalexcavation site, far beyond the scanning capacity of existing imaging systems.Hence, there is high demand for a desirable image acquisition system capable ofimaging hundreds of fragments per day. In response to this demand, we developeda new system, dubbed FIRES, for Fast Imaging and 3D REconstruction of Sherds.The FIRES system consists of two main components. The first is an optimallydesigned fast image acquisition device capable of capturing over 700 sherds perday (in 8 working hours) in actual tests at an excavation site, which is oneorder-of-magnitude faster than existing systems. The second component is anautomatic pipeline for 3D reconstruction of the sherds from the images capturedby the imaging acquisition system, achieving reconstruction accuracy of 0.16milimeters. The pipeline includes a novel batch matching algorithm that matchespartial 3D scans of the front and back sides of the sherds and a new ICP-typemethod that registers the front and back sides sharing very narrow overlappingregions. Extensive validation in labs and testing in excavation sitesdemonstrated that our FIRES system provides the first fast, accurate, portal,and cost-effective solution for the task of imaging and 3D reconstruction ofsherds in archaeological excavations.<br

    GRB 050408: An Atypical Gamma-Ray Burst as a Probe of an Atypical Galactic Environment

    Get PDF
    The bright GRB 050408 was localized by HETE-II near local midnight, enabling an impressive ground-based followup effort as well as space-based followup from Swift. The Swift data from the X-Ray Telescope (XRT) and our own optical photometry and spectrum of the afterglow provide the cornerstone for our analysis. Under the traditional assumption that the visible waveband was above the peak synchrotron frequency and below the cooling frequency, the optical photometry from 0.03 to 5.03 days show an afterglow decay corresponding to an electron energy index of p_lc = 2.05 +/- 0.04, without a jet break as suggested by others. A break is seen in the X-ray data at early times (at ~12600 sec after the GRB). The spectral slope of the optical spectrum is consistent with p_lc assuming a host-galaxy extinction of A_V = 1.18 mag. The optical-NIR broadband spectrum is also consistent with p = 2.05, but prefers A_V = 0.57 mag. The X-ray afterglow shows a break at 1.26 x 10^4 sec, which may be the result of a refreshed shock. This burst stands out in that the optical and X-ray data suggest a large H I column density of N_HI ~ 10^22 cm^-2; it is very likely a damped Lyman alpha system and so the faintness of the host galaxy (M_V > -18 mag) is noteworthy. Moreover, we detect extraordinarily strong Ti II absorption lines with a column density through the GRB host that exceeds the largest values observed for the Milky Way by an order of magnitude. Furthermore, the Ti II equivalent width is in the top 1% of Mg II absorption-selected QSOs. This suggests that the large-scale environment of GRB 050408 has significantly lower Ti depletion than the Milky Way and a large velocity width (delta v > 200 km/s).Comment: ApJ submitte

    Boolean delay equations on networks: An application to economic damage propagation

    Full text link
    We introduce economic models based on Boolean Delay Equations: this formalism makes easier to take into account the complexity of the interactions between firms and is particularly appropriate for studying the propagation of an initial damage due to a catastrophe. Here we concentrate on simple cases, which allow to understand the effects of multiple concurrent production paths as well as the presence of stochasticity in the path time lengths or in the network structure. In absence of flexibility, the shortening of production of a single firm in an isolated network with multiple connections usually ends up by attaining a finite fraction of the firms or the whole economy, whereas the interactions with the outside allow a partial recovering of the activity, giving rise to periodic solutions with waves of damage which propagate across the structure. The damage propagation speed is strongly dependent upon the topology. The existence of multiple concurrent production paths does not necessarily imply a slowing down of the propagation, which can be as fast as the shortest path.Comment: Latex, 52 pages with 22 eps figure

    Inclusion of Experimental Information in First Principles Modeling of Materials

    Full text link
    We propose a novel approach to model amorphous materials using a first principles density functional method while simultaneously enforcing agreement with selected experimental data. We illustrate our method with applications to amorphous silicon and glassy GeSe2_2. The structural, vibrational and electronic properties of the models are found to be in agreement with experimental results. The method is general and can be extended to other complex materials.Comment: 11 pages, 8 PostScript figures, submitted to J. Phys.: Condens. Matter in honor of Mike Thorpe's 60th birthda

    Computational studies of light acceptance and propagation in straight and curved multimodal active fibres

    Get PDF
    A Monte Carlo simulation has been performed to track light rays in cylindrical multimode fibres by ray optics. The trapping efficiencies for skew and meridional rays in active fibres and distributions of characteristic quantities for all trapped light rays have been calculated. The simulation provides new results for curved fibres, where the analytical expressions are too complex to be solved. The light losses due to sharp bending of fibres are presented as a function of the ratio of curvature to fibre radius and bending angle. It is shown that a radius of curvature to fibre radius ratio of greater than 65 results in a light loss of less than 10% with the loss occurring in a transition region at bending angles of pi/8 rad.Comment: 21 pages, 13 figure

    Inferentialism as an alternative to socioconstructivism in mathematics education

    Get PDF
    The purpose of this article is to draw the attention of mathematics education researchers to a relatively new semantic theory called inferentialism, as developed by the philosopher Robert Brandom. Inferentialism is a semantic theory which explains concept formation in terms of the inferences individuals make in the context of an intersubjective practice of acknowledging, attributing, and challenging one another’s commitments. The article argues that inferentialism can help to overcome certain problems that have plagued the various forms of constructivism, and socioconstructivism in particular. Despite the range of socioconstructivist positions on offer, there is reason to think that versions of these problems will continue to haunt socioconstructivism. The problems are that socioconstructivists (i) have not come to a satisfactory resolution of the social-individual dichotomy, (ii) are still threatened by relativism, and (iii) have been vague in their characterization of what construction is. We first present these problems; then we introduce inferentialism, and finally we show how inferentialism can help to overcome the problems. We argue that inferentialism (i) contains a powerful conception of norms that can overcome the social-individual dichotomy, (ii) draws attention to the reality that constrains our inferences, and (iii) develops a clearer conception of learning in terms of the mastering of webs of reasons. Inferentialism therefore represents a powerful alternative theoretical framework to socioconstructivism

    Magnetic Damping of Solid Solution Semiconductor Alloys

    Get PDF
    The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations

    Mapping between dissipative and Hamiltonian systems

    Full text link
    Theoretical studies of nonequilibrium systems are complicated by the lack of a general framework. In this work we first show that a transformation introduced by Ao recently (J. Phys. A {\bf 37}, L25 (2004)) is related to previous works of Graham (Z. Physik B {\bf 26}, 397 (1977)) and Eyink {\it et al.} (J. Stat. Phys. {\bf 83}, 385 (1996)), which can also be viewed as the generalized application of the Helmholtz theorem in vector calculus. We then show that systems described by ordinary stochastic differential equations with white noise can be mapped to thermostated Hamiltonian systems. A steady-state of a dissipative system corresponds to the equilibrium state of the corresponding Hamiltonian system. These results provides a solid theoretical ground for corresponding studies on nonequilibrium dynamics, especially on nonequilibrium steady state. The mapping permits the application of established techniques and results for Hamiltonian systems to dissipative non-Hamiltonian systems, those for thermodynamic equilibrium states to nonequilibrium steady states. We discuss several implications of the present work.Comment: 18 pages, no figure. final version for publication on J. Phys. A: Math & Theo
    • …
    corecore