265 research outputs found

    On some new theorems in the theory of diophantine approximations

    Get PDF

    Topological Designs

    Full text link
    We give an exponential upper and a quadratic lower bound on the number of pairwise non-isotopic simple closed curves can be placed on a closed surface of genus g such that any two of the curves intersects at most once. Although the gap is large, both bounds are the best known for large genus. In genus one and two, we solve the problem exactly. Our methods generalize to variants in which the allowed number of pairwise intersections is odd, even, or bounded, and to surfaces with boundary components.Comment: 14 p., 4 Figures. To appear in Geometriae Dedicat

    On some applications of graph theory, I.

    Get PDF
    In a series of papers, of which the present one is Part I, it is shown that solutions to a variety of problems in distance geometry, potential theory and theory of metric spaces are provided by appropriate applications of graph theoretic results. © 1972

    Close to Uniform Prime Number Generation With Fewer Random Bits

    Full text link
    In this paper, we analyze several variants of a simple method for generating prime numbers with fewer random bits. To generate a prime pp less than xx, the basic idea is to fix a constant qx1εq\propto x^{1-\varepsilon}, pick a uniformly random a<qa<q coprime to qq, and choose pp of the form a+tqa+t\cdot q, where only tt is updated if the primality test fails. We prove that variants of this approach provide prime generation algorithms requiring few random bits and whose output distribution is close to uniform, under less and less expensive assumptions: first a relatively strong conjecture by H.L. Montgomery, made precise by Friedlander and Granville; then the Extended Riemann Hypothesis; and finally fully unconditionally using the Barban-Davenport-Halberstam theorem. We argue that this approach has a number of desirable properties compared to previous algorithms.Comment: Full version of ICALP 2014 paper. Alternate version of IACR ePrint Report 2011/48

    The early evolution of the H-free process

    Full text link
    The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as nn \to \infty, the minimum degree in G is at least cn1(vH2)/(eH1)(logn)1/(eH1)cn^{1-(v_H-2)/(e_H-1)}(\log n)^{1/(e_H-1)}. This gives new lower bounds for the Tur\'an numbers of certain bipartite graphs, such as the complete bipartite graphs Kr,rK_{r,r} with r5r \ge 5. When H is a complete graph KsK_s with s5s \ge 5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)11/(eH1)Cn^{2/(s+1)}(\log n)^{1-1/(e_H-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s5s \ge 5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.Comment: 36 page

    Short proofs of some extremal results III

    Get PDF
    We prove a selection of results from different areas of extremal combinatorics, including complete or partial solutions to a number of open problems. These results, coming mainly from extremal graph theory and Ramsey theory, have been collected together because in each case the relevant proofs are reasonably short

    How Many Subpopulations is Too Many? Exponential Lower Bounds for Inferring Population Histories

    Full text link
    Reconstruction of population histories is a central problem in population genetics. Existing coalescent-based methods, like the seminal work of Li and Durbin (Nature, 2011), attempt to solve this problem using sequence data but have no rigorous guarantees. Determining the amount of data needed to correctly reconstruct population histories is a major challenge. Using a variety of tools from information theory, the theory of extremal polynomials, and approximation theory, we prove new sharp information-theoretic lower bounds on the problem of reconstructing population structure -- the history of multiple subpopulations that merge, split and change sizes over time. Our lower bounds are exponential in the number of subpopulations, even when reconstructing recent histories. We demonstrate the sharpness of our lower bounds by providing algorithms for distinguishing and learning population histories with matching dependence on the number of subpopulations. Along the way and of independent interest, we essentially determine the optimal number of samples needed to learn an exponential mixture distribution information-theoretically, proving the upper bound by analyzing natural (and efficient) algorithms for this problem.Comment: 38 pages, Appeared in RECOMB 201

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Global aspects of the space of 6D N = 1 supergravities

    Get PDF
    We perform a global analysis of the space of consistent 6D quantum gravity theories with N = 1 supersymmetry, including models with multiple tensor multiplets. We prove that for theories with fewer than T = 9 tensor multiplets, a finite number of distinct gauge groups and matter content are possible. We find infinite families of field combinations satisfying anomaly cancellation and admitting physical gauge kinetic terms for T > 8. We find an integral lattice associated with each apparently-consistent supergravity theory; this lattice is determined by the form of the anomaly polynomial. For models which can be realized in F-theory, this anomaly lattice is related to the intersection form on the base of the F-theory elliptic fibration. The condition that a supergravity model have an F-theory realization imposes constraints which can be expressed in terms of this lattice. The analysis of models which satisfy known low-energy consistency conditions and yet violate F-theory constraints suggests possible novel constraints on low-energy supergravity theories.Comment: 41 pages, 1 figur
    corecore