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1. In a recent book ~ one of us based a series of applications on the: 
following three theorems. 

I. If 

m is a non-negative integer, the b/s  are arbitrary complex numbers, there i s  
then an integer ~,~ such that 

m + l  < = v ~ < = m @ n  
and 

,,, , ( n y~ 
[blz]'~-pb2z,., -~ . . . .  ?b,z ,?] > iz ,  I ~'~ 2 e ( m + n - ) )  I b m + ' "  ?b,~[. 

If. With the above notations there is an integer v._, such that 

m §  
and 

Iblz?  ~ -~'~ ' - > izi] ~'" rain ibl~F . . .  + b y  I. -1-b2z2 -r- . . - -  b ~ . . . . .  1l 
- h  ~,z, , ' l  = 24e~(m + 2 n )  y = 1 , .  ..... 

IIL With the above notations and 

+ (z) = I I  ( ~ -  z~,) 

there is an integer v3 such that 

m-? 1 --< v3 =< m + n  
and 

t b, z ?  + O.~z~ + . . . + b,~z~? l ->_- 

(2 jolt iI 
\ j = l  "1=-11 +lz~ 1 max ~ Iz*l'~ 

,~=o,1 . . . . .  ~,~-~) ~=, I~o'(z010 +lz~l )  
In mentioned book 1 Ill was discussed mainly as a matter of orientation and  
had only one application in the investigation of integral functions of type  

a,, y ( c , , z )  

1 p. TuRiN, Eine neue Methode in tier Analysis und deren Anwendungen (Budapest~ 
1953), Akad~miai Kiad6. 
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where F(z) is an integral function. Since that time the second of us found 
some more applications of it. To show the essence of these three Theorems 
I, II,  III we call the quantities 

~" Ib)L ~zjl ,  'z,+l+', ' IZlJ" ( 1 . 1 )  t ~' J 
.i--1 

NtO',f) norms of f 0 ' ) = . ~  h~z;'(t~ 1, 2, 3). Then the Theorems I, II and Ill 
j 1 

can be expressed by saying .that, for a suitable integer ~,, I "~5=:~ +' is esti- 

mated fiom below by the NT(v, f )  norms (1.1) so, that the lower  estimation 
of their quotient should be-independent 

a) of the zj-values 

(1.2) or 
b) of the b] coefficients. 

Theorems I and I1 are of a)-type, Theorem 111 is of b)-type. This formula- 
tion of the theory is more symmetrical than that given in ~, where only pro- 
blems of a)-type were systematkally treated. In connection with an applica- 
tion ~ the necessity of dual theorems emerged where non-trivial upper esti- 
mations of 

rain if00i 
,+~§ ~+,~+,+§ N d ' v , f )  

~, integer 

are needed even at the rate of simple geometrical restrictions on the z./s. In ~ 
one can find detafled motivation, on which way Theorems I, II and II1 can 
be considered as generalisations of KRON~CKER's and DIRICHLET'S classicai 
theorems in the theory of diophantine approximations. 

2. In ~ the emphasis was laid upon the applicability of these theorems 
and no care was taken to best-possible inequalities, though these have a 
significance for some applications, too. One can show this e.g.  on the esti-. 
mation ~ of N(cr the number of zeros of ;(s) (s=o4-it) in the parallelo- 
gram a>c,.,= 0 < t  <= T 

(2. l) N(<<, 7")~ O(T"-(~-~ 
which is uniformly valid for  

( 2 . 2 )  1 - - 0  ~ ~ ~ 1 

with a (small) numerical positive d. This constitutes the best-known estima- 

P. ToRAh, On Lindel6f's conjecture, Acta Math. Acad. Sci. Hung., 5 (1054), pp. 
145--163. 

This is an finpublished sharpening of Theorem XXXVIlt of t 
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tion in this range today. The proof of this is largely based on the case 

(2.3) bl = b~ . . . . .  b,~ = 1 

of Theorem II; thereby the decrease of the numerical factor 24e 2, since n is 
"large" in this case, would result an increase of d in (2.2) which in turn 
would result a decrease of the smallest known O with the property 

O o P,~+I--P,~:--- (P~) 
where p~ denotes the n th prime. The main aim of this paper is to review 
the a)-type results in the first part of 1 from this point of view, in particular 
in the case (2.3), and to study certain @1,z2, . . . ,  z,~)-systems, which will 
play a role in these questions. We suppose without loss of generality 

(2. 4) z,,=- 1, I z j l ~  1 ( j =  1 , . . . ,  n) 

in I and 

(2.5) zl = 1, [z~- t = 1 ( j :  1, . . . ,  n) 

in If. In the case (2. 5) we ask for the "smallest" numerical positive vattie 
A1, for which 

( ; v f n 
(2. 6) max I z~ + z2 + . . .  ' ~' z, l >= A (m + n) 

r integer 

holds for an arbitrary non-negative integer m and positive integer n. We 
shall show in 6 - -9  the following 

THEOREM. We have for the A~ defined in (2.6) the inequality 

1,321 < A1 < 2e1+~(< 24). 

The gap is still large but the upper bound is much better than the 
previous 24e2,~ 177. That A1 > 1,1, can already be shown taking 

1 2~7i 

m = O ,  n = 2 ,  z ~ = l ,  z 2 = ~ e  3 ; 

in this case we have 

i ,  e ~  

~ V  

- 2 ' 4 ' 

Y ~  1 2 
4 A-~ A1 ~ > 1,1 - -  ' m r  4 ~ 

An interesting feature of  the proof of the upper bound is the avoiding of the 
use of H. CARTAN'S theorem and replacing it by a lemma of CHEBYSEV-type. 
The new proof furnishes mutatis mutandis the following improvement of II. 

2 Acta Mathemat ica  V1/3--4 
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Under the conditions of II we have 

... ,,., => n min .Jbl+""-J[-bj[, 
(2. 7) Iblz~2-[ - +b,z,cl . l+• j : = 1  

It will be sufficient to indicate only the changes, the proof of (2.7) 
needs compared to that of the theorem. 

3.-A further refinement of the upper esfimation in the Theorem would 
be given if the constant 2e in I could be diminished, even only in the special 
case bi . . . . .  b , ~ = l .  Asking for the "smallest" numerical positive value 
A~, for which in the case (2.4) 

( ; (3, 1) max I zr " + z,~: I > n 
,,,+1=<,,-<,,~<,, +Z~ + " "  = A2(m+n) 

v integer  

holds for any positive integer n and non-negative integer m, nothing better 
than 

(3.2) 1<  A2 ~ 2e 

can be asserted at the present. Something better can be said on the "smallest" 
numerical positive value A~ for which in the case (2.4) 

( ; , ,  n 10 + . . .  + [ (3.3) max [blZl+.. .+&z,~] >= A.~(m+n) 
v integer  

holds for any complex b~'s, positive integer n and non-negative integer m. 
We shall show in 10 that 

4 
(3.4) 1, 27 ~-~ - -  --< A~ =< 2e ~ 5, 44. 

UC 

4. The lower limitation of A~ in the Theorem will be proved in 9 b y  
refining an idea of P. ERDOs, i.e. considering (Zl,& . . . .  , z,0-systems with 
the property 

(4. 1) s.2=s,; . . . . .  & - l : 0 ,  z, 1 

where s,, stands for zl'+z2 + .  +zn. This suggests for the sake of counter 
examples the usefulness of the study of all (z~ . . . . .  z,0-systems with the. 
property 

S 2 = $3 . . . .  S~i--1 = Sn  : O ,  

or more generally with a prescribed non-negative integer m the determination, 
of all those with 

(4. 2) s,,,+i = s,,,+2 . . . . .  s,,,+,~-, = 0. 

We mention another reason why (4. 2) is interesting. The whole theory emerged 
from the necessity to diminish the interval for r a. in I, II and 111 as much as  
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possible;  the question arises now, whether or not for some integer values m 
there is a non-trivial lower limitation for 

is,,l max 

~, integer 

or for 

IS,, [ 
max 

,,-i-<,,-<,,§ rz,fl, 
~, integer 

That  such a reduction of the interval for v is generally impossible, is trivial, 
since in the case m ~ 0  rood n we have for the n tu roots of unity 

Sm+l : S i n + 2 :  . . . .  Sm+~-I : 0 .  

Probably the same holds for all non-negative integer values m. As the N e w t o n - -  
Girard formulae show at once, for m = 0 all the (Zl, . . . ,  z,,)-systems with 

(4. 3) s ~ :  s2 . . . . .  s,,_l = 0 

are given by the zeros of an equation 

(4. 4) z'~q - a  0 (a arbitrary complex). 

We can determine all systems satisfying (4. 2) with m ~ 1 and m = 2. 
For m - -  t we assert that all (z~, z2 . . . . .  z,~)-systems with the property 

(4. 5) s2 = S:~ . . . . .  s,~ = 0, 

are formed by the zeros o f  an equation 

(4 .6)  % ( z ,  a) = z ~ q- . z ~ ~ + . . .  q- ~. : -  0 (a arbitrary complex). 

An asymptotical determination of these systems for fixed a and n - - ,  
follows at once f r o m  SzgG0's ~ results. For m = 2  w e s h a l l  see in 11 that 
all the (zl, z2 . . . .  , z,,)-systems with 

(4. 7) sa = s4 . . . . . .  s~ = s,~+1 = 0 

are formed by the zeros of  an equation 

H,,(z) 
(4. 8) f,,,(z, a, 2) = z" az"-I q- " '  ~ n ! a '~ = O, 

where H~(y) stands for the ,~th Hermite polynomial defined by 

d e 
H,,( y) : -  ( - - l y e ' J  ~ dy.  e-% 

Z denotes any zero o f  H , ~ + l ( y ) : 0  and a is an arbitrary complex numbeJ'. 
An asymptotieal determination of the zeros of f~(z,  a, 2) is not known. The  

-i- G. SZEG6, O b e r  e ine  E i genscha f t  d e r  Exponenf i a l r e ihe ,  Sitzungsber. der Berl. Malh. 
Ges., 23 (1924), pp.  5 0 - - 6 3 .  

2-* 
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result (4. 5)--(4. 6 ) c a n  be easily 5 proved by Newton--Girard formulae so 
we .omit the details. It is interesting to remark a characteristic difference 
between the cases m = 1 and m = 2. All solutions of (4. 5) can be derived 
from the single equation 

Z Z ~ Z r~ ~+g+N +...+~=o, 
all solutions of (4. 7), however, can be derived from the ( n §  1) equations 

,~=0 v! z " = 0  where H,,+,(~)=0.  

5. Owing to the applicability to the approximative solution of algebraic 
equations it is of interest to study II in the special case 

(5. 1 ) m = 0, 01-= b., . . . . . .  b~ = 1. 

In this case we have to determine 

(5.2) M, ~ min max 
]zj !--_<l r = l , , . . , n  

j = l ,  ...., ~ 

In~ we have shown 

(5.3) M. >= 

il + z ; +  .-. + z,,~]. 

log2 
1 1 1 ' 

T+~-+---+7 
according to a written communication of DE BRUIJN this can be replaced by 

loglog n (c numerical positive constant), (5.4) M,~ > c log n 

what is for large n somewhat better. This makes still more probable the con- 
jecture that M,~ ~ d, independently of n. As to the upper estimation of M,, 

Mr. HVLTEN-CAVaLLmS showed M 2 ~  1/5---1 ,-,-0,86 and found by con- 
V~ 

sidering & ~ 0,1295 q- i 0,7063, & = - -  0,5128 g- i 0,1508 the estimation 

M.; < 0,831. 

6. Before turning to the proof of the Theorem we need the following 

simple 

(6 .1)  

LEmmA. Let  be 0 <-- d <~ 1 and  

f l z )  = z" + . . . .  H ( z - z , . ) .  
,t, ~ 1  

5 Another very elegant verification is due to E. EaErvarY. Using Euler's formulae 

z~ - - 0  0 , = 0 ,  1 . . . .  , n--2)  valid for any polynomial co(z) wilh simple zj-zeros of 
j=l/,'(zj) -- 

degree n and using 9~;(z;, a) = (nl z~)- ld  '*+1 j the result follows at once. 
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Then, there is a circle ] z [ :  ro with 6 ~ ro <: 1 such that on t h e  whole 
periphery 

2('4). 
For the proof we introduce 

(6. 2) p(z) 
~ = l  

Owing to the classical theorem of CHEBYSEV 'there is a ~ with d ~ ~ ~ 1 and 

But on the circle t z l = ~  we have 

[ z - z j l > = [ [ z [ - i z j l [ = i ~ - l z j [ i  ( j =  1,2, . . . ,  n), 

i.e. multiplying, further using (6.2) and (6.3) we get 

Hence the above ~ can be chosen as 1"o. Q. e. d. 

7. Next we turn to the proof of our Theorem. We may suppose that 
n >--2. Let be, with our numbers zj, 

(7. I) w(z) = H ( z - z j )  
j : l  

and let 6' be a positive number 0 ~ d ~  1 to be determined later. To this 
o)(z) and d there is, according to the Lemma, an ro with d =< to=< 1 and 
such that for I z I = r0 

(7.2) [~o(z)[ :> 2 ( - ~ )  '~ . 

Since each factor [z--zj[ is at most 2, we have from (7.2) for [ z [ = r o  and 
for any choice of the indices (1 = )  il < i,, < .. .  < i~ ~ n (1 ~ k =< n) 

(7.3) ~,=g]z-z~'[1 ~ 2 [  '~ ] 2,,_,~=2 

We investigate two cases. 

Case a) All zj's are absolutely ~ I"o. Then, owing to 1, there is an 
integer v~ with m + 1 ~ r~ ~ m-I- n and 

(7.4) I z r ' + z ~ ' + ' " + z ' ~ ' l > r ~ '  2 e ( m + n )  > d'~+" n = = 2 e ( m + n )  

Case b) There is an index l with 1 =~ 1< n and 

(7.5) 
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In  the treatment ot this case we shall suppose first that the z3's are all 
different. 

8. Let first be 

(8. 1) f ,  (Z) = H ( z -  zs) =- ~ '  c:z-(1) .... ~-3-, c(j) = 1 .  

We have obviously 

Next let f2(z) be that polynomial of deg ree  =< l - - l ,  which assumes for 
z = z~, z~., . . . ,  zt the values 

1 1 1 
z~+lf~(z~) ' z~"'f~(z.2) ' ' ' ' '  Z'~+'f~(z~) ' 

respectively. I f  l =  1, then 

1 ~=- c~2); L ( z ) ~  .... + ~ . . .  

if 1 < l < n, then we can represent f2(z) as Newton-interpolatorical polynomial 

L (z) = c~o 2) + d~'~(z-zl) + c~(Z-Z~) (z-z~) + . . .  + cI?~ ( z - z ~ ) ( z - z + . .  (z-z,_ 3. 

1 
Since the function zm+tf l (z  ) is regular for tz] > r0 and vanishes for z =  ~ ,  

we have according to NO~LUND'S representation 

, 1 ~ d w  
(8. 3) 4 2 ) - -  2 ~ i  J W"+lf~(w) ( w - -  Z~)=(w--Z,2) ' ' '  (w--zy+,) 

b~:]=ro 

(j---- o, l , . , . , ( l - -  1)). 

But f ~ ( w ) ( w - - z d . . .  (w--Z:+l) is of type (7 .3)  with k = n - - l + ] +  1 and 
thus owing to (7. 3) we have for ]w I = ro 

[1--2-0]" 1 O "'~ I [fI(W)(W--Zi)(W--Z2) ""(W--zi+l)l ~ 2  \ b :  2" 7+5+,= 2 ( L ~  ) 2 *-:-~ ' 

i .e.  f r o m  (8.3) 

_ _  2t_j_l  1 2 ~ s 1 
(8. 4) 14"~ ~ 2r~ ~ [ 1 ~ - ~  } = 2d" ~ " 

But we need also f o(z) in the form 
l -1  

j=O 

and we have to estimate the coefficients c! ~). We have 

f ) ,  = cl~ ), 
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and if l > 1, for j = O, 1, . . . ,  (1--2) 

c j  - - C j + I  " " " Cj+2 , ~  Zr, Z r ~ - -  "@ 
1 ~ r 1 ~ j +  1 1 ~ r i  < ~'o ~ j + 2  

-I- (--1)z J 'c}~)~ .~ ZrtZr~ j - l '  

i.e. 
I J : l =  ~ + c ) + 1 [  1 + ~;+~[ 2 ) + " +  C~:l r 1 

Thus from (8. 4) 

2~J-' ( 4 Y~I 
IcPI ~ 2ore t ~ )  

(8. 5) 
co �9 t l ~  1 2'""( 4 

< 

2~$-1( 4 "** 2z-1( 4 ~ ":. 

Let finally be 

(8.6) A(z)=zm§ ~_, c}~) zJ: 
j = m + l  

It follows from the definition of f~(z) and fi_(z) that 

( 8 .  7 )  f a ( Z l )  = f s ( Z o )  . . . . .  S~ (Zl) = | ,  f a ( Z / + l )  . . . . .  i 3 ( Z n )  = O .  

Replacing z in (8. 6) by zj and G summing for j ' =  1, 2 . . . . .  n we get, 
using (8: 7) and writing 

(8.8) s~, = zl' + z~' + . . .  § zL 

the identity 
�9 ~1-t-I$ m-t-~ 

~-~m-l-1 ~ , ~ m + l  

i . e .  

(8 .9)  1 < -- max Is~,!( ~ [4 4) �9 
v i n t e g e r  

But from (8.6)  we have 

i~ e ,  

C j4) ~ ~(!) .(a) 
n - l -jl+j~=j - m - 1 

= cj~ ; 
j ~ l , + l  t . j l = 0  

6 If we want to prove (2. 7) instead of the upper estimation of the Theorem, we 
have also to multiply by bj and then to sum for j. 
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thus, using (8.2) and (8. 5), we get 

j=~n+llCJ4) I < 2 n _  1 . 2 z-1 4 ~ 1 " 8 ''~ 

Then we have from (8.9) 

1 d ~ 
(8. 10) max Is,,[ > 

,,~+1-_<~_->,,,+,~ ~ - -U- ) "  
e integer 

Now we choose d so, that 

0m+,,( ) . . . .  \ 2 e ( m + n )  = 6~" ( ~ )  ' 
i. e. 

1 
- -  60; d 4 n - -  

1 §  
e m - t - n  

then from (7. 4) and (8. 10) we got 

max [z~+z~'+...+z,~,>26'o"+~( n )~. 

B u t  

whence 

4n n ) ) "+"<  ~'~ d~ '+~ _4,~ l + e ( m +  : e T ,  i. e. ~ e  

2( . max ] z~ q- �9 + z~] > ~-  4 

..... +1, ,,,+2 ........ +,~ 2 el+V(m + n) 

i. e. our Theorem is for different z j s  proved. We can get rid of the restric- 
tion ztc:4: z,, (t~=~= u) exactly on the same way as in the previous proof in 1 
and we do not detail it. 

9. Now we turn to the lower estimation in the Theorem. Let ~ be a 
positive constant, less than 1 and to be determined later, let z l =  1 and 
z,.,z3, . . . ,z~ be determined by the conditions (with the notation (8. 8)) 

(9. 1) s ~ : & n , s ~ : s a  . . . . .  Sn-1 : 0. 

It is well known that these conditions determine uniquely the numbers 
zj ( j = 2 , 3 , . . . , n ) ;  let us denote them by ~,, ( g ~ : l ,  ~ = 2 , 3 , . . . , n ) .  Let 
further be 

f ( z )  = z ~ + a ~ z  ~- 1 + . . .  + a,~ 

the polynomial with the zeros ~,~ ( r : - 1 , . . . ,  n). Then the Newton--Girard 
formulae give successively 

s~ ~ (_1),~-1 s~ -~ 
(9.2) a ~ = - - s ~ , a 2 = 2 - ~ ,  a3- -  3 ! ' " "  a ~ - l =  ( n - -  1)! " 
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Since g~= 1 is a zero of f(z), we have 

S~ S} ...  + (__ly~q a,=--( l+a~+. . .+a,~=~)=--  1 - - ~ f - } 2 !  

(9. 3) co !_ 
- s ; .  

d~J~ 

Further, we have from Newton--Girard formulae 

(9.4) 

n- 1 ) 
S1 

(n-1)l = 

J~ 
$1 s~--=---a,_lsl--na,,~(--1)'~-(n_~l) ! +ne -s, - - 2 n  ( - - l f  

and from (9. 3) and (9. 4) 

s,~§ ~ - -  al s,~-- a,~ sl = sl (&--  a~) = 
(9.5) 

= s ,  s l  
j =  +1 ]a ~ . 

s f  
Since 0 < `9 < 1, the terms ~.v decrease monotonically if j ~ n, it follows 

m j n+l 
, ~  ( - -  1 )j+l "~'Sl ' ~  S1 

j=,,+~ j .  (n + 1,)! ' 

i .e.  from (9.4) and (9. 5) 

( ) I ('gnY~' (#n)"+' t (~n)~'+~ ts,,+~[ < `9n (n+ l)e ~ t~T-.t -~ n! 

Since k ! >  e e, we get for n > 10 

[&l <=nte-a!~+ l (e`9)'~+~t, Is,+~l <=(n+ l)2(e-~+4(e`9f) 

whence with m ~ 1 

max Is,.[ < 4(n + l)2{e-~ 
-m+l ~ v ~ n~+~ 

If ,9 is the (only) positive zero c~ of the transcendental equation 

(9. 6) x--=e -~'-1, 
then we have 0,2784 ~ ,9 =< 0,2785 and for our g,,'s 

(9.7) max [s,,I ~ 8 ( n + l ) ~ e  -`'~ 
v integer 

It may occur that (2. 5) is not fulfilled by the _~,,-system, i. e. some of them 
are absolutely ~ 1. If so, we can construct simply by contraction a ~*-system 
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satisfying (2. 5) and for which (9. 7) holds a fortiori. Thus for an arbitrary 
small ~ > 0  and for n > n0@) there is a ~,-system satisfying (2.5)  such that 

max [&,] =< e-(~o -~)''. 

~, integer 

Hence, if for each integer n =>_ 1 and m _>-- 0 the estimation (2. 6) is valid, then 

( n ) <e(-~o+,),,, i .e .  al > e,o~,, l,321, 
A1 n) = 

indeed, 

10. We are going to prove (3.4).  Obviously we need only to show 

4 
A >  3 :  - - "  

We choose e .g .  n big odd, m :  n 3 and with a slight modification of idea 
of P. STEm7 

~,i 1 n- -1  ,,i,,~ (2j-,~-1) 
_ e ' ( , , + , o  ( j =  1, 2, . . .  n). {10.1) z j - - e  ~ .... a), hi:  2.,1 j - - 1  

Then we get 

~/ 7~t  n - 1  
f i (y)-- . f f_ ,  bjz3 - -  2,~_ ~ ~., , e ~ ( e o  .... 1)(v+~-) __ 

j = l  j - - ' l  [ j - - l }  

uo ~ ( Y ' b 2  - e { ~ l )  .SZ ' 

= - = c~ 2(m + n )  y +  " 

Let us observe that for all sufficiently large n's 

�9 " ~ ,  ' y g n  = c o s , , - 1  .w .'..r 1 
b i : c o s ' - ~ . ~ ( m + n )  "4'(n'-'+l) >c~ 4n ~ >  1 3"----=5 l + - -  

ll 
Hence for m =< y ~ m + n  we obtain 

Ifo(Y)t < 1 + 1  bs sin~_ 1 ~ n  
: n ) l j : l  ] 4(m + n )  < + 

: 1  + 1 )  4-- (n~ + 1 ) : z  4 ( m + n  ) ,i~:1 bs" 

Since for an arbitrary small ~ > 0 we have for n > no(~) 

(1-]- I ~  4 ~ , 1 
n ) - ~ ( n  T 1 ) <  (l__sy~ , 

we got 

4 0 - - 0 .  Aa-----_~ 

n )1 
m + n  bj -~- 

Q . e . d .  

7 See J. E. LITTLEWOOD, Math. Notes (12), An inequality for a sflm of cosines, Journ. 
of London Math. Soc., 12 (1937), pp. 217--222. 
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{11.2) 

:for a k < n .  Then 

11. In order to show (4. 7)--(4.  8) we take 

{11.1) s , - - - - 2 u ,  s 2 = 2 v  2 (v~-O). 

Then Newton--Girard ' s  formulae give 

(") 
2 a 2 = - - & - - a l & =  2v2+4U~=v~i4[ ' t t ]~e- -2 i=v2H, , (U]  

! \ u ]  ) - \ v ? '  

a2 = ~. H2 , 

denoting by H~,(y) the r th Hermite polynomial ttefined in (4. 9). Suppose we 
showed already 

am = ~ ( . t  H,, (m = 1, 2 . . . . .  k) 

(k + 1)a,~+~ - -  - -  ( S k + l  ~ -  alSk AU''" -~-aT;sl) 
and, using (4. 7) and (11.2), 

(k + 1)a,~+~=--(ak_~s2+aks 0 ~ , ( k ~ l ) !  H#_~ 2u ~- 

k 7  v " 
(11.3) 

But as well known 

(11.4)  

i. e. from (11.3) 

2 x H~ (x) - -  2 k Hj~_~ (x) =- H~,,+, (x), 

d ~+1 ( u )  
ak+l (k + 1)! H~:+I ~ .  , 

what  shows that (11.2) is true for m = 1, 2, . . . ,  n. Conversely these values a,, 
assure that s3 = s4 . . . . . .  s,~ ~ 0. For s,+l we have 

S n + l  ~ - - ( a l  st, @ ' "  -k a, sl) ~ - -  (a,,1 s2 + a~, $1), 

i. e. from (11.1) and (11.2) 

(n 1)F 

V n+l 2 U H n  u --2nH~_1 u =.,i. (.) 
or from (11.4) 

vn+l  



2 5 4  VERA T. SdS AND P. TUR]tN 

Since v @ O ,  s ~ + l = O  implies u - ~ 2 v  where 

H~+l (;,) = O. 

This proves already (4 .7 ) - - (4 .  8). 
For the value s,~+2 we have in our case 

s,~+2 = --(a,s~,+~ -t- a.2s,~ + . . .  -t- a,~s.,_)= - -  a~s2 = - - 2  ~ .  H,~(]O, 

i. e .  

(11.5)  max [s, ,I--  ~, Ivl~**~ I Hn(~)[. 
r = 3 ,  4, . . . ,  (n+2) 

If the minimal absolute value of the zeros of 

z,, 0 (11 .6)  ~ r !  

is denoted by A,~(/~), then the maximal one of 

~_ H~,(i,) v~'z ~"  
r!  

i s ~ .  Hence, if we choose v : A . , , ( ~ ) ,  we obtained a (z~, . .  ., z~)-system 

with 
max [ g [ = l  

;~1,  . . . ,  n 
and 

(11.7) 2 ~ n+2 
max I z ~ ' + . - .  + z ~ '  l=~-.w IH~d,~)lAn(2) . 

~,=3, 4, . . . ,  (n+2) 

An asymptotical determination of A,~(/~) (or even a good upper estimation of 
it) and a suitable choice of 2 would probably  result a better lower bound 
for A~ in the Theorem. 

(Received 29 .January 1955) 

O HEKOTOPblX HOBBIX TEOPEMAX TEOPHH ,~IAO~AHTOBblX HPI,IBJIHM~EHHI~I 

B e p a  T. I i Iom n II. T y p a H  (By;tanemT) 

( P e 3 t o ~ e )  

BTOpO~ n8 aBTOpOB nacTo~meti paBoTh~ BO c~oefi ne~aBHO Bb~me~mefi Knnre ~an 
aeabfii pfl~ npu~tenennfi ,0,rlodOaHTOBblX HepaBenCTB I, 1I, IlI, 0THOCfIII~HXCfl K paannqnb~M 
neTnsnM auaansa a anannTH~ecKofi TeOpnH qncea. YnyqmeHne DTIIX HepaBencTB Ba~no n c 
TOq~n 3penn~ npnMenennfi. B nacTo~efl  pa6oTe aBTOpbI 3naqnTeabno yayqmamT Teope~y 
1[. B O B ,  HOM n 3  CaMblX BaIgHblX /1~I~ r l p n M e n c n n ~  c ~ y q a c B  OTO ynyqmenne COCTOHT B cne~Iy- 
m u ~ e M :  HyCTb m a x  [zjl = 1, n n y c T s  A o a n a q a e T  n a n M e n b m y ~ o  qHCnOnylO nOCTO~nny}o,  

j =  1, ..., ~ 
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~ KOTOpO~ 

max /sv [ ~ . max I z~ + . . .  + z.,~[ ~ A ( m - +  n)', 
~+1 ~ ~'~_ m+~ m+I ~ ~' ~ m+n 

(v r~pnuHMaeT ~eabm 3Haqem~),  npn  Bcex ~eab~x neoTpn~aTe.~bHb~X m H I.Ieablx. ~. Tor / la  
. 4 

1 + - -  
1,321 ~ A < 2e ~ 

B CB~aH C yayumeHHe~ oueHKH cnHay BOaHHKaeT Bonpoc O Bcex. C~CTeMax (Z D ..., Zn) , 
~Jl~t KOTOpblx 

a) s2 = sa . . . . .  s~ : 0, 

b) s~ = s~ . . . . .  s,,+! - -  O. 

JleFK0 ~o~r qTO c TOqHOCTBI0 ~I,O p a c T ~ e H n g  H Bpam, enH~ e~HHCTBeHHa$t CHCTeMa 

( z ~ , . . . ,  z,;), y~0saeTBop~mu~aa ycaoBnm a) COCTOnT Ha ~opneii ypasHenn~ ; i  - - 0 .  

Hec~oab~o TpygxHee ,~ol<a3aTb~ qTO - -  OnglTb C TOHHOCTblO ~l,O paCT~r~eHv~ n, Bpanl, ear~a - -  

rece CnCTem, i (Zl, . . . , z , ) ,  y~OBaIeT~op~ro~He yc:iom,~ro b) COCTOnT r~a ~:opnefi n +  1 
ypa~ne~nfi 

~ H,,(,~) z,~ , , = 0 ,  

r;~e H~,(y) eCTb MHOrOqaeu ~pM~Ta cTenenu v, a 2 am6o~i ~open~ ypaBuenna H ~ ( y ) ~ - - O .  


