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Abstract . In a series of papers, of which the present one is Part I, it is shown that solutions to a
variety of problems in distance geoinetry, potential theory and theory of metric spaces arc
provided by appropriate applications of graph theoretic results .

§1

In what follows we are going to discuss systematic applications of
graph theory - among others - to geometry, to potential theory, and
to the theory of function-spaces . This sounds perhaps surprising to those
who still think of graph theory as the "slum of topology" . These appli-
cations show that suitably devised graph theorems act as tlexible logical
tools (essentially as generalizations of the pigeon hole principle) and
leave nothing to do with topology at all . We believe that the applications
given in this sequence of papers do not exhaust all possibilities of appli-
cations of graph theory to other branches of mathematics . Scattered
applications of graph theory to geometry and number theory (mostly
via Ramsey's theorem) existed already in the papers of Erdös and
Szekeres [6] and Erdbs 12.5 ] . The inherence of graph theoretic methods
in the problems we are dealing with is indicated also by the fact that it
leads often to best possible results .

* Original version received 10 June 1971 ; revised version received 17 September 1971 .
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Several parts of the results contained in this sequence of papers were
subject to lectures given by the authors . The first lecture was given by
the last named author on Aug. 30, 1968 in Calgary . The first printed
account, reproducing lectures of the last named two authors at the Con-
ference on Combinatorial Structures and Their Applications in June
1969 at the University of Calgary, appeared in the Proceedings of this
Conference (see [ 171 and [201) . The second paper of this series which
was written much earlier than the present one, appeared already in [71 .
Accounts were given also by the second named author in a lecture at
Imperial College, London, in 1970 .

The first group of applications refers to the distance distribution of
point sets in a complete metric space . Let (X, d) be a complete metric
space and let F be a family of point sets f in X satisfying the following
restrictions :

(1 .1) For a sufficiently large R, all sets of F are in a sphere of radius
R .

(1 .2) If f E F and f, is a finite subset of f, then fi E F.
(1 .3) If f E F is finite, P E f, then for arbitrary e > 0 there exists a

P, in X such that

P i * P ,

	

d(P,PI ) < e ,

and the set

fl =fu{P1 }

belongs to the family F too .
Important examples of such families in case of finite-dimensional

euclidean spaces Rk , which interest us in this paper almost exclusively,
are :

(a) . The family F of all closed domains in Rk with maximal chord I
(taking in account that in R k translation does not change distances) .

(b) . All closed subsets of the closure of a fixed bounded domain D in
RI (l < k),

(c) . All closed sets in Rk whose projection to all hyperplanes in Rl
(l < k) can be translated into the closure of a fixed bounded 1-dimensio-
nal domain .

For given F let Fn denote the subfamily of F whose elements f satis-
fy the additional restriction
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(1 .4)

	

JfJ=n .

We are interested in the distribution of distances

(1 .5)

	

d(Pµ,P„),

	

I<p<v<n,

in sets f which belong to Fiz .
The families F are so general that at first glance it seems hopeless to

assert anything nontrivial for the distribution in this generality . Never-
theless we have found that by introducing "the packing-constants r

belonging to the family F' a great deal can be said about the distribu-
tion . These constants are defined for v > 2 by

(1 .6)

	

S v =B„(F)=

	

sup

	

min d(Pi ,Pj ) .
(P,, . . .,Pv) E Fv 1< i< j< v

These constants obviously exist and are monotonic in v :

52> 53> . . . .

Moreover they are also "monotonic in F" in the sense that F, C F2
implies obviously

(1 .8) 6„(F1) < S v (F2 ) , v > 2 .

In the case of Rk , we have also

(1 .9)

	

lim S„ = 0 .
V--
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We found that in the general case, in addition to the packing constants,
the "critical indices" 12, i 3 , . . . play a decisive role in the distribution of
distances of the sets of F, . They are defined by

(1 .10)

	

6 2 = . . . = 6i2 > 5i 2+1 = . . . _ 56 >
56+1

= . . . ;

and for convenience we define

(1 .11)

	

i 1 = 1 .
1 The name can be justified the easiest when the family F consists of the point sets on the

unit sphere . Having spherical distance, for each v > 2 suitably placed disjoint caps with spheri-
cal radii 8 v/ 2 realise the densest packing by v congruent spherical caps of the unit sphere .
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We can formulate now

Theorem 1 . For each fixed v > 2 and n > i 2 , the number of distances
d(Pi , Pi ) (i j) in each set f of Fn satisfying the inequality

(1 .12)

	

d(Pi ,Pj ) < S i„+i (= S i „+1 )

is at least

(1 .13)

	

zn2/i„ -2n .

The theorem is best possible in a very strong sense . Equality in (1 .13)
can be attained for all F -families, for all v >_ 2 and n > i,,, n = 0 (mod i„) .

§2

In order to show that Theorem 1 leads to genuine geometrical results,
let first F be the family of sets on the periphery of the unit circle . Then
evidently

5 1 = 2 sin (7r/1)

	

(l = 2, 3, . . .)

and i t = 1 . Hence by Theorem 1 for v > 2 we have : If n > v and n points
lie on the periphery of the unit circle, then at least (z n 2 ly - z n) dis-
tances are < 2 sin (ir/(v+1)) . Putting m points on the periphery very
close to each vertex of a regular v-gon, we see at once that the number
of distances < 2 sin (7r/(v+1 )) (even the number of distances
< 2 sin (7r/v) i7, -q small positive) equals zn 2 /v - 2 n indeed .

Another important case when all packing constants can be deter-
mined is given by the subsets of an arc AB having the property that if P
is fixed on it and Q moves along it off P then

(2 .1)

	

QP decreases strictly monotonically .

In this case - as is easy to see - S„ is furnished by the side length b„ of
the "inscribed quasi-regular v-gon AP2P3 . . . P,-,B" defined by
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(2 .2) AP2 P2P3 - . . . Pv-2Pv-1 - Pv-1B - bv

the points Pi being on the arc .
All packing constants belonging to circular arcs can be explicitly

determined . Several packing constants belonging to the unit-square in
R2 and unit cube in R3 have been determined in the papers of Meir
and Schaer [ 12] and Schaer [ 14] . Probably all packing constants
belonging to a convex curve can be explicitly determined (somewhat in
the sense of (2 .2)) .

In the case when the family F consists of plane sets with maximal
chord length 1, the packing constants 5,,, 2 < v < 7 were determined
for a different purpose by Bateman and Erdös in 1951 [ 1 ] ; they are

(2.3)

	

52 =53= 1 ,

	

54=z-\/2,

	

55=2 ( 5-1),

56 = 1/(2 sin 720 ) ,

	

57 = 2 .

As proved by Thue (see [ 181 }, S„ is, for large v, asymptotically

(12IT2)i/a V- 1/2

Since in this case i . = v + 1 (2 < v < 5), for v = 2 Theorem 1 yields that
if n > 3 points are located on a plane with maximal distance 1, then at
least 6 n2 - z n distances are < z .\/2. This was the only known case of
Theorem 1 (see Erdös [ 3 ] ) . A classical case of the determination of the
packing constants is known since Newton and Gregory . If F -consists of
all subsets of the unit sphere in R3, their known dispute (see [8 ], p . 236)
boils down to the question whether or not in this case 513 < 1 = S 12 or
S 13 = 512 . Since now, this time in nonspherical metric,

(2.5) b2-2, b3-

	

, S4-

	

, S5-s6 N 2>b2 ,

21 1

we have iv = v for 2 < v < 4 and i5 = 6 . Theorem 1 now yields, e .g. for
v = 4, that if n > 4 points lie on the unit sphere, at least án2 - z n
euclidean distances between them are <

	

(and generally no more) . 2
Schoenberg [ 15 ] and Seidel [ 16] found that choosing F to be the family

2 Since the Newton-Gregory dispute, the sequence of packing-constants is intensely investi-
gated from the point of view of strict monotoncity . Using Theorem 1 the other way around,
one can devise a general meth

	

Sv > Sv}i if it is true (see [21]) .

Q
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of all sets in R k with maximal chord length 1, beside the trivial 8 2 =
53 = . . . = 5k+1 = 1, we have

.\/kl (k + 2)

	

if k is even ,
(2.4) sk+2 -

J(k2 +2k- 1)l(k2 +4k+3) if k is odd ,

and hence i2 = k + 1 . Theorem 1 gives e .g. that if n > k + 1 points in Rk
(k even) have maximal distance 1 then at most kn2l(2k+2) distances
can be greater than Vkl (k + 2) . In other words, if we have (for some
even k) a system of n > k + 1 points with maximal distance 1 and more
than kn 2 l (2k + 2) of the distances are > Vkl (k + 2), then the system
cannot be isometrically embedded in R k (again best possible) . Such type
of non-embeddability criteria seem not to be observed before .

All these motivate the interest in the general problems of prescrib-
ability, uniqueness and geometrical realizability-of the sequence of pack-
ing constants (as mentioned already in [201) .

§3

Theorem 1 gives sharp lower bounds for the number of distances not
exceeding Siv+1 in F1z C F. What can be said of the number of distances
not exceeding S for a fixed S? We are going to prove

Theorem 2. If 0 < S < 82 and v >_ 2 is (uniquely) determined by

(3 .1)

	

Si„ +i < 8 < S i„ ,

then for n > i„ the number of distances d(Pi,Pj), i j, in each set f of
Fn satisfying the inequality

(3 .2) d(Pi,Pj ) < S

is at least

(3 .3) n2l(2i„) - Zn .
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This lower bound is best possible for all F-families, for all 5 < 5 2 and
n > i„, n = 0 (mod i„ ) .

A particularly elegant (but somewhat weaker) form can be given to
Theorem 2 by observing that, together with its best possibility concern-
ing n, it implies the existence of

(3 .4)

	

lim (2)-1 min a(f) ,
n -r - fE F n

where a(f) denotes the number of pairs PZ ,Pj 1 f with

(3.5)

	

d(Pi,Pj )<5,

	

i<j .

Denoting the limit in (3 .4) by HF (5) and calling it "the lower distance-
distribution function of the family F", an alternative form of Theorem
2 is

Theorem 2' . For all F-families of sets in (X, d), the lower distance distri-
bution function HF(S) is a right-continuous step function with jumps
only at 5 = 5 i„ and

lim

	

HF(5) = 1/(i v_1) ,

	

v = 2, 3, . . . .
s s sv +o

(Note the definition of i i in (1 .11)) .

§4

Next we turn to some applications in complex function theory . Let
B be a bounded and closed set on the plane with boundary aB . Then we
assert for the capacity (see [ 10] ) of B

Theorem 3 . If aB belongs to an F-family satisfying (1 . 1), (1 .2), (1 .3)
with packing constants V and

(4.1)

	

1 V-2 log (1/5*)
V

diverges, then the capacity of B is 0 .
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The theorem is best possible in the sense that for arbitrary small
e > 0 there exist sets B with positive capacity such that

(4 .2)

	

E v- 2+e log (1 /3 *)

	

diverges .
v

More generally, we shall prove

Theorem 4 . IfB is a bounded and closed continuum (whose comple-
ment is simply connected) and aB belongs to an F-family of sets satis-
fying (1 . 1), (1 .2), (1 .3) and having the packing constants V, then the
outer conformal radius r = r(B) obeys the inequality

(4.3)

	

r(B) < II (Sv)~~(v-1)v
v= 2

Since E „=21 /4'_ 1) v = 1, both sides of (4.3) are linear in a magnify-
ing constant, hence without loss of generality we may assume

52 = 1 .

If we retain in (4.3) only the first few packing-constants we can get
upper bounds for r(B) .

Obviously (4 .3) can be used as a system of inequalities, giving upper
bounds for the outer conformal radius via various geometrical proper-
ties of the set (expressed by our F-families) .

As is well known, Pólya proved the inequality

F < 7rd(B)2 ,

where F stands for the outer Jordan measure of B and d(B) for its
transfinite diameter (supposing now only that B is bounded and closed) .
Connecting this with the real content of Theorem 4 we get

Corollary 4 .1 . If B is a bounded and closed set in R 2 with outer Jordan
measure F so that aB belongs to one of our set-families H with packing
constants S,(H), then we have the inequality

(4.4)

	

F< 7r 11 Sv (H) 21(v-l) v
v=2
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This is a purely geometrical inequality between certain geometrical
constants of B . It would be of interest to find a geometrical proof for it
and also to find the higher-dimensional analogues, mainly for R 3 .

§5

Next we turn to some applications which yield bounds for energy
integrals . Let D be a bounded and closed set in R k with positive finite
/-dimensional Jordan measure I D 1, l < k . We consider integrals of the
form

(5 .1)

	

I(g) _ ,f f g(PQ) dgp dvQ
(D) (D)

connected to a mass distribution with density 1 on D . Here PQ means
euclidean distance and g(x) is any function satisfying

(5 .2)

	

(i) g(x) is monotonically decreasing
(ü) g(x) is bounded from below in (0, 8 2 ) .

The cases

g(x) = logx -1 ,

	

g(x) = x , ,

	

a > 1 ,

are obviously included . Now we choose as the family F all subsets of D.
Then we assert

Theorem 5 . Denoting by S„ the packing constants of the family F, the
inequality

(5 .3)

	

IDI-2I(g) >

	

g(b„)l(v- 1)v
v=2

holds for all g(x) satisfying (5 .2) .

Equality holds in (5 .3) for g(x) _- 1 . It is perhaps of interest to note that
the evaluation points on the right-hand side do not depend on g, remind-
ing the classical formulae of mechanical quadrature .

Denoting the potential at P generated by g(x) (with uniform mass
distribution) by

2 1 5
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(5 .4)

	

G(P) = f g(PQ) dvQ ,
(D)

Theorem 5 yields at once the inequality

(5 .5)

	

sup G(P) >_ IDI I g(S„)/(v- 1) v .
PE= D

	

v=2

It is therefore a plausible conjecture that for every y, 0 < y < l, the
inequality

(5.6)

Then we have

Theorem 6. For the potential G(P) generated by g(x) in (5 .4) the in-
equality

G(P) >_ yIDI E g(S,V(v- 1)v
v=2

holds in D with the possible exception of a set of measure < y I D I . This
would be an interesting counterpart of the classical upper bound of
Ahlfors-Cartan (see [ 131). We could prove so far a weaker theorem
only . Let g(x) be positive and monotonically decreasing for x > 0 and
let the index r be defined (if it exists) by

(5 .7)

	

max {g(5,)/(v- 1)v} =g(5,)/(r- Or .
V

r
G(P) ? y1D1 Y, g(b„)l(v- 1)v

v=2

holds in D for every y, 0 < y < l, with exception of a set of measure
y(1 -(r-1)-1 ) ID I at most .

§6

Next we turn to the proof of Theorem 1 . It is based on the following
graph theorem [17 ] :

For given K, N, 3 < K < N, let

(6 .1)

	

N=(K-1)t+s,

	

0 < s < K -
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A graph TN (admitting only simple edges and no loops) with N vertices
which does not contain a complete subgraph of order K cannot have
more than

(6 .2)

(6.4)

2(K - 1) (N2 _S2)
+ (2)

edges. In the unique extremal graph (where equality can be attained),
the vertices can be divided into K - 1 disjoint classes each containing
t + 1 or t vertices so that each pair of vertices from different classes is
connected by an edge whereas pairs from identical classes are not con-
nected .

Let now v be fixed and {P1 , P2 , . . ., Pn } be in F72 . We make correspond
to it a graph /,n with vertices Pí, P', . . ., P,' as follows : P I and Pk (j < k)
be connected by an edge in On if and only if

(6 .3)

	

d(PI ,Pk) > &i„, (= Si„+1) .

Let

n=i„m+h,

	

O<h<i„ -1 .

We assert that the number of pairs satisfying (6 .3) cannot exceed

i„ - 1

	

def

piti
(n 2 -h2) + (z) = U .

2 1 7

For, otherwise, the graph On had more than U edges and thus the graph
theorem (6 .1)-(6 .2) with

N=n,

	

K=i,+ 1,

	

t=m,

	

s = h

would imply the existence of a complete subgraph of order i„ + 1 . Re-
turning to distances, however, this would mean that for suitable points
Pl , P2 , . . ., Pi„+1 from {P i , . . ., P,}, all distances were > Si„+1 . Since the
number of points is finite, for a sufficiently small ri > 0 all these dis-
tances are even > 8i„ +1 + ri . But this is in contradiction to the definition
of the S„'s in (1 .6) . Hence our assertion (6 .4) is correct . But then the
number of pairs with
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is at least

as claimed .

§7

In order to prove that Theorem 1 is best possible for all F-families
and for all v > 2, let for arbitrarily small e > 0 the set

(7.1)

	

{P1,P2, . . .,Pt„ }

be in Fi„ such that

d(Pj ,Pk ) <

(7.2)

	

min

	

d(Pj*, Pk) > 5 i„ - e .
I<j<k<i„

1 < i < k < n ,

(n ) - z{(i„ - 1)/i„} (n 2 - h 2 ) - (2)

=zn2/i„ -zn+zh(1-h/i„) >zn 2/i „ -2n,

Let M be an arbitrary positive integer . Repeated use of (1 .3) results that
arbitrarily close to each of the points Pj*, M - 1 different points can be
found so that the resulting system 11 of n = Mi„ points belongs to Fn
and the distance of two points located "close" to different points is

>S i„ -2c .

Since S i„ > Si„+1 , e can be chosen so small that

8 i„ - 2e > S i „+ , .

Hence the number of distances between points of H not exceeding b iv+1
is indeed

i (M) = i (-1M 2 -'M) = i (zn2 /i 2 -'n/i) ='n 2/i -'n .v 2

	

v

	

2

	

v 2

	

v

	

2 v

	

2

	

v

	

2

In order to prove Theorem 2, we observe that the estimation (3 .3)
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follows at once from monotonicity with respect to S . Hence we have
only to show that it is best possible also for 5j,+1 < S < 5 jv . Fixing such
a S, and choosing an q > 0 so small that

5<Sw -2n,

the reasoning of § 7 repeated with e = z ,q yields the desired conclusion .

§$

Before proving Theorems 3 and 4, we shall prove Theorem 5 . We
remark first that without loss of generality we may assume

(8 .1)

	

g(x)>_0,

	

0<x<8 2 .

Namely, if (5 .3) holds for this case and gl (x) decreases monotonically
for x > 0 so that

g1 (x) >-c l ,

	

0<x<S 2 ,

then applying the result to g(x) = g l (x) + c l , we get

c 1 ID 1 -2 f f dvp dvQ + ID I -2 ,f ,f gl (PQ) dvp dvQ
(D) (D)

	

(D) (D)

>
~

g1(5,)+ cl
v=2 (v - 1)v

hence the theorem follows for the general case . So we may asuppose
(8 1) .

Let f = {P1 , P2, . . ., P72 } E F„ and consider the sum

(8 .2)

	

Sn = n-2

	

g(PjPk) def n -2

	

g(yjk )

1<j-,-k< n

	

1<j k < n

This can be split into partial sums according to

Sh+1 < rjk < Sh , h=2,3, . . .

2 1 9
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(permitting also empty sums if it happens that 5h+1 = 5 h ) . Owing to the
monotonicity of g(x) this gives

(8 .3)

	

Sn > 2n-2 h~2 g(Sh)Wh ,

where Wh denotes the number of pairs (j, k), j k, with

5h+l < rik < 5h

Using the notation

def
(8 .4)

	

Zh = Z W 7z
na=h

it follows from Theorem 1 that for n >_ h - 1,

(8 .5)

	

Zh > zn 2 /(h - 1) - zn .

Further, clearly, for certain integer L

Zh =O for h>L .

Using partial summation we get from (8 .3)

Sn > 2n -2 {g(62)(Z2 -Z3) +g(5 3 )(Z 3 -Z4 ) + . . . +90L-1)(ZL-1 -ZL )}

L-1
= 2n-2 {g(5 2)Z2 +

	

(g(8h) - g(8h-M Zh}h=3

= 2n-2 {g(b2)Z2 + h 3
(g(sh) -90h-MZh} .

=

n+1
Sn > 2n -2 {g(b2)(2n 2

	

+

	

(90h) -g(Sh-l))(-n21(h - 1)-zn)}
h=3

n+1
= 2n-2{-- zng(bn+1) + in2 (g(52) +

	

(g(sh) -9(5h-M1(h -1))}
h=3

n

há 9(5h)1(h - 1)h .

P . Erdős et al., On some applications of graph theory, I

All terms of the last sum are nonnegative ; hence retaining only the
terms with h < n + 1 and applying (8 .5) we get
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Now Theorem 5 follows from (8 .6) by usual passage to limit .

§9

Next we turn to the proof of Theorem 6 . Let z 1 , z 2 , . . ., z n be in B and

E(z 1 , . . ., zn ) _ (z)-1

	

log Izj -zk I-i = ( z)-i

	

log (1/rjk )
def

1<i<k<n

	

1<1<k<n

The minimum on B of E(z 1 , z2, . . ., z n ) for fixed n exists and is attained
for a system of points fzi, z2, . . ., zn } on B .

Denoting by rj*k the corresponding distances, we have

(9 .1)

	

E(zi, . . ., z* )= zn2(z) -1 {n
-a

	

log(1/r;k)}
1<j~k<n

which, applying the reasoning of § 8, yields
n

(9 .2)

	

E(zl, . . ., zn) >_ (n- 1) -1 E (1/(h - 1)h) log(1/Sk) .
h=2

As Fekete proved [9], the left side of (9 .2) tends to logo -1 as n

A being the transfinite diameter of B . Owing to the known relation
A = r(B), the proof of Theorem 4 is now completed .

§10

Theorem 3 is a remarkable special case of Theorem 4 ; so we turn now
to prove the assertion preceding (4.2) concerning its best possibility . Let
0 < e < ioo be fixed and let

(10 .1)

	

2 < n 1 < n 2 < . . .

a sequence of integers (to be determined later) . Then every number in
(0, 1) can be represented in the form

(10 .2)

	

x = E cv/n 1 n2 . . .n„ ,

	

0 < e, <_ nV - 1 .
V=1

Let our set B consist of x's having as c„ "digit" the values 0 or n„ -- 1 .
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We want to estimate b 2k , the 2kth packing constant of this set . Having
any 2k points of our set, at least 2k-1 of these have common first digit,
at least 2k-2 of these have identical first two digits, . . ., at least 2 have
first k - 1 identical digits . Hence

(10.3)

	

b 2k < (nk - 1)/n ln 2 . . .nk <- 1/n 1 n 2 . . .nk- 1

Owing to the monotonicity of the packing constants we have for
2k < v < 2k+1

Hence

b„< 1/n 1 n 2 . . .nk 1 -

def 2k+1-1

	

2k+1-1
Uk =

	

E v-2+E log 5, 1 > log (n n . . . nk_1)

	

v- 2+ e
v=2k

	

v=2k

> 2-(k+1)(1-E) 2k log(n l n 2 . . .nk 1 )

k-1
> I • 2-k(1-c) I log nv .

v=1

Choosing now

(10 .4)

	

n„ _ [2 2W-V26 )
l

we get

v=1,2, . ..,

U > ? , 2-k(1-e) Y1 21'/e >

	

2'hek
k

	

zo
V=1

with a numerical constant c . Thus the series (4 .2) indeed diverges .
If we can prove that the transfinite diameter of our set is positive

then the proof of the assertion (4 .2) is finished . This will be done by
exhibiting for each integer l, 2 1 elements x„ of our set so that

1
(10 .5)

	

{

	

H

	

Ixj -xk II II( á ) > C > 0
1<j<k<2

independently of l . For this purpose we choose for each l > 3 the points
x„ as
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1
(10.6)

	

1
1

ei /n 1 n2 . . .ni ,
i-

We split the product in (10 .5) into

(10.7)

	

HIH2 . . .111-1

(10 .8)

	

> (nv - 1)/n l n2 . . .nv - Y (nv - 1)/n 1 n 2 . . .ni
1-v+1

= 1/n1n2 . . .nv- , - 2/n 1 n 2 . . .nv

=(1/n,n2 . ..nv-1) (1 -2/n v) .

In order to calculate the number of factors in H v , we observe that the
first v - 1 identical digits in x i and x k can be chosen on 2' -1 ways, the
last l - v digits of xi resp . xk can be chosen independently on 2 1- v ways .
This gives rise to (2 1-v ) 2 2r'-1 factors in H v . Hence

Hv > J1/n,n 2 . . .nv-1 ) ( 1-2/nv)}
2v-1221-2v

and thus the product in (10.5) is at least

H

	

{(1/nin2 . . .nv-,) (1-2/n v )}
221-ví 21(21-1)

1<v<1_1

-v+1
>

	

11

	

(1 /n 1 "2 . . . nv-1) (1 - 2/nv )2`+1
K

l-1
> c l exp {- 2 Z2 2-v (logn l + logn2 + . . . + lognv _ 1 )}

v=2

with a positive numerical c l . Since, owing to the choice (M .4), indeed

Ej =0 or ni -1 .

22 3

where H v is extended to all factors I xi - xk I such that the first different
digit in the expansion (10 .6) of xi and xk occurs on the with place . Each
such factor is therefore (putting n o = 1)
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§11

Finally we turn to the proof of Theorem 4 . We shall denote by I s I
the number of elements of a set s . We shall need the following

Lemma 1 . If L 1 , L 2 , . . ., Lm are subsets of the finite set L and for
v = 1, 2, . . ., m,

(11 .1)

	

IL„I>((m-1)/m)ILI,

then the intersection of all L„'s is not empty .

Proof. For the proof let

l1,l2 5 . . .

	

,

	

n = I L I ,

be all elements of w and let a„ be the number of L„'s which contain 1,, .
Then we have, using (11 .1),

m

	

n
n(m - 1) <

	

1 Lj 1 =

	

av ,j=1

	

V=i

which implies that max„a„ >_ m . This is equivalent to our assertion .

We shall need an easy corollary of the graph theorem (6.1), (6 .2),
which we shall formulate as

Lemma 2. If in a graph GN with N vertices every vertex has degree at
least ((y - 2)/(y - 1))N, then GN contains a complete subgraph of
order y .

Proof. The proof is easy . The degree condition implies that the number
of edges in the graph is greater than the corresponding quantity in (6 .2) .
This proves the lemma .

We shall also need

Lemma 3 . Let UN be a graph with N vertices which does not contain any
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complete subgraph on K vertices, 3 < K < N . Let

(11 .2)

	

0<A< 1/(K-1) .

Then the number of vertices of degree not exceeding (1 - A)N in FN is
greater than

(11 .3)

	

{1 -A(K-2)}N .

Proof. For the proof we decompose the vertices of T N into the disjoint
classes 2 1 and 922 , the first one containing all vertices of degree

(11 .4)

	

> (1 -- A)N

and 22 the others . The essential observation is that 92, cannot contain
a complete subgraph of order K -- 1 . Suppose namely that

(11 .5)

	

Q1, Q2, . . ., QK-1

were the vertices of such a subgraph . Denoting for j = 1, 2, . . ., K - 1 the
set of vertices in "N which are connected by an edge to Qi by Rp we
have by (11 .4),

(11 .6)

	

IRji>(1-A)N,

	

j=1,2, . . . . K-1 .

This implies, owing to (11 .2), that

IR;I>
K-l

n .

Hence Lemma 1 is applicable to the Rd 's with m = K - 1 . Consequently,
rN would contain a vertex Q* which is contained in all R d's, i .e. is con-
nected to all Qt 's . But then (Q1, Q2 , . . .' QK-1 , Q*) would be a complete
subgraph of order K in rN, in contradiction to our assumptions . Thus
92 1 contains no complete subgraphs of order K -- 1 . But then the appli-
cation of Lemma 2 to GN = 92, with y = K - 1 implies that the degree
of at least one vertex in S2 1 with respect to 92 1 is
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< K-2 1211

and hence its degree with respect to 17N is less than

N - 1211+K-21

	

1 =N-
K

1 2 12 1 1 .

This yields in connection with (11 .4) that

(1-A)N<N- K 1
2 1211,

121 1 < A(K - 2)N .

This implies indeed that more than (1 - A(K - 2))N vertices in FN have
degree < (1 - A)N .

We shall use Lemma 3 in the following form :
If rN contains no complete subgraph_s of order K and A satisfies

(1 1 .2), then the complementary graph "N contains more than

(11 .7)

	

(1 -X(K-2))N

vertices of degree (with respect to FN)

(11 .8)

	

> AN .

§12

Now we can turn to the proof of Theorem 7 . Let P1 , P 2 , . . ., Pn be in
an f from the family F with packing constants S„ and critical indices
' 1 , i 2 , . . . . For a fixed v >- 2, corresponding to P I , . . ., Pn , we define a
graph G with vertices Pj , j = 1, 2, . . ., n, as follows :

The edge Pj Pk occurs in G if and only if

(12 .1)

	

Pi Pk > Siv+1 (= bi v+1 ) .
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We easily see, as before, that G does not contain a complete subgraph
of order iv+1 = i„ + 1 . Thus, applying Lemma 3 in the form (1 1 .7),
(11 .8) with Fj,, = G, N = n, K = (i„ + 1), we get that for

(12.2)

	

0 < X < Ili,

more than

(12 .3)

	

(1 -A(i„ - 1))n

points Pj have the property that the inequality

Pjpk< b i v +1

holds for more than An points Pk , k j . Thus the positivity and mono-
tonicity of g(x) implies that

n
(12 .4)

	

n -1 kE- 9(Pkpj) >_ í19(8i„+1)
k -í1j

By usual passage to limit we obtain that the inequality

(12.5)

	

G(P) >- A ÍD Í g(bi„+1)

holds in the set f of F with the possible exception of a set of measure

(12.6)

	

<A(i„-1)ÍD1 .

Replacing A by (1 /i„) y, 0 <- y <- 1, this yields that the inequality

(12 .7)

	

G(P) ? (y ID I/i„)g(8iv+1) >_ yÍDi(g(biv+1)l(i„+, - 1)i„+1)i„+,

holds in each set f of the family F with exception of a set of measure

<_y(1-1/i„)IDI=y(1-1/(iv+,-1))ÍD I .

Defining r by (5 .7), the inequality (12 .7) implies on choosing v so that
iv+, = r that

227
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r

C(P) > y l D l

	

g(S„)l(V- 1)V
v=2

P . Erdős et al., On some applications ofgraph theory, 1

at most holds in D with the exception of a set of measure

y1D1 (1 - 1/(r- 1» .
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