560 research outputs found
Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression
Elevated levels of combustion-derived particulate matter (CDPM) are a risk factor for the development of lung diseases such as asthma. Studies have shown that CDPM exacerbates asthma, inducing acute lung dysfunction and inflammation; however, the impact of CDPM exposure on early immunological responses to allergens remains unclear. To determine the effects of early-lifeCDPMexposure on allergic asthma development in infants, we exposed infant mice to CDPM and then induced a mouse model of asthma using house dust mite (HDM) allergen. Mice exposed to CDPMHDM failed to develop a typical asthma phenotype including airway hyper-responsiveness, T-helper type 2 (Th2) inflammation, Muc5ac expression, eosinophilia, and HDM-specific immunoglobulin (Ig) compared with HDM-exposed mice. Although HDM-specific IgE was attenuated, total IgE was twofold higher in CDPMHDM mice compared with HDM mice. We further demonstrate that CDPM exposure during early life induced an immunosuppressive environment in the lung, concurrent with increases in tolerogenic dendritic cells and regulatory T cells, resulting in the suppression of Th2 responses. Despite having early immunosuppression, these mice develop severe allergic inflammation when challenged with allergen as adults. These findings demonstrate a mechanism whereby CDPM exposure modulates adaptive immunity, inducing specific antigen tolerance while amplifying total IgE, and leading to a predisposition to develop asthma upon rechallenge later in life. © 2014 Society for Mucosal Immunology
3D morphometric analysis of calcified cartilage properties using micro-computed tomography
Objective: Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (mu CT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). Method: Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. Results: OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (r(s) = -0.600, P = 0.018), entropy of patterns (EP) (r(s) = -0.648, P = 0.018), homogeneity index (HI) (r(s) = 0.555, P = 0.032)) and tidemark roughness (TMR) (r(s) = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (r(p) = 0.876, P <0.0001; r(p) = 0.665, P = 0.007, respectively) and channel density (CD) (r(p) = 0.680, P = 0.011; r(p) = 0.582, P = 0.023, respectively). TMR was associated with CAF (r(p) = 0.926, P <0.0001) and average channel size (r(p) = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. Conclusion: We introduced a mu-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA. (c) 2018 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
Ontology-Based Multiplatform Identification Method
This paper puts forward a multiplatform identification method to overcome the limitations of a single platform strategy when mass customization is required. The method is applied to redesign or consolidate an existing product family. The method consists of four steps: (1) the determination of component values, (2) the estimation of component redesign efforts, (3) the platform component identification, and (4) the formation of multiple platform instances. An ontology-based framework is also provided to facilitate the information representation and the data integration in the identification of multiplatform structure. Once the platforms are identified, an ontology reasoning mechanism verifies the platform sharing among products and determines the possible multiplatform coalition. A water cooler product family is used to illustrate the ontology-based multiplatform identification method
Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)
The basic known and hypothetic one- and two-element phases of the B-C-N-O
system (both superhard phases having diamond and boron structures and
precursors to synthesize them) are described. The attention has been given to
the structure, basic mechanical properties, and methods to identify and
characterize the materials. For some phases that have been recently described
in the literature the synthesis conditions at high pressures and temperatures
are indicated.Comment: Review on superhard B-C-N-O phase
Need and importance of health protection training in Nepal
By investing in health protection, the health of the nation can be safeguarded from future threats of uncontrolled infectious disease epidemics and disasters
A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2
Many investigators are currently studying the use of decellularized tissue allografts from human cadavers as scaffolds onto which patientsâ cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. However, it is difficult to seed cells onto very dense regular connective tissue which has few interstitial spaces. Here, we discuss the development of a chemotactic cell seeding technique using solvent-preserved human meniscus. A chemokinetic response to recombinant human bone morphogenetic protein-2 (rhBMP-2) was observed in a monolayer culture of primary chondrocytes derived from femoral epiphyseal cartilage of 2-day-old rats. The rhBMP-2 significantly increased their migration upto 10Â ng/ml in a dose-dependent manner. When tested with solvent-preserved human meniscus as a scaffold, which has few interstitial spaces, rhBMP-2 was able to induce chondrocytes to migrate into the meniscus. After a 3-week incubation, newly-formed cartilaginous extracellular matrix was synthesized by migrated chondrocytes throughout the meniscus, down to a depth of 3Â mm. These findings demonstrate that rhBMP-2 may be a natural chemokinetic factor in vivo, which induces migration of proliferative chondrocytes into the narrow interfibrous spaces. Our results suggest a potential application of rhBMP-2 for the designed distribution of chondrocytes into a scaffold to be used for tissue engineering
Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development
International audienceMethods for immobilizing glucose oxidase (GOx) on cellulose acetate (CA) membranes are compared. The optimal method involves covalent coupling of bovine serum albumin (BSA) to CA membrane and a subsequent reaction of the membrane with GOx, which has previously been activated with an excess of p-benzoquinone. This coupling procedure is fairly reproducible and allows the preparation of thin membranes (5-20 ”m) showing high surface activities (1-3 U/cm2) which are stable over a period of 1-3 months. Electrochemical and radiolabeling experiments show that enzyme inactivation as a result of immobilization is negligible. A good correlation between surface activity of membranes and their GOx load is observed
Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring
International audienceA new miniaturized glucose oxidase based needle-type gluÂŹ cose mlcrosensor has been developed for subcutaneous gluÂŹ cose monitoring. The sensor Is equivalent In shape and size to a 26-gauge needle (0.45-mm o.d.) and can be Implanted with ease without any Incision. The novel configuration greatly facilitates the deposition of enzyme and polymer films so that sensors with characteristics suitable for In vivo use (upper limit of linear range > 15 mM, response time 60%). The sensor response is largely Independent of oxÂŹ ygen tension In the normal physiological range. It also exÂŹ hibits good selectivity against common interferences except for the exogenous drug acetaminophen
Formation of Nano-Bio-Complex as Nanomaterials Dispersed in a Biological Solution for Understanding Nanobiological Interactions
Information on how cells interface with nanomaterials in biological environments has important implications for the practice of nanomedicine and safety consideration of nanomaterials. However, our current understanding of nanobiological interactions is still very limited. Here, we report the direct observation of nanomaterial bio-complex formation (other than protein corona) from nanomaterials dispersed in biologically relevant solutions. We observed highly selective binding of the components of cell culture medium and phosphate buffered saline to ZnO and CuO nanoparticles, independent of protein molecules. Our discoveries may provide new insights into the understanding of how cells interact with nanomaterials
- âŠ