521 research outputs found
Angular momentum transport by internal gravity waves III - Wave excitation by core convection and the Coriolis effect
This is the third in a series of papers that deal with angular momentum
transport by internal gravity waves. We concentrate on the waves excited by
core convection in a 3Msun, Pop I main sequence star. Here, we want to examine
the role of the Coriolis acceleration in the equations of motion that describe
the behavior of waves and to evaluate its impact on angular momentum transport.
We use the so-called traditional approximation of geophysics, which allows
variable separation in radial and horizontal components. In the presence of
rotation, the horizontal structure is described by Hough functions instead of
spherical harmonics. The Coriolis acceleration has two main effects on waves.
It transforms pure gravity waves into gravito-inertial waves that have a larger
amplitude closer to the equator, and it introduces new waves whose restoring
force is mainly the conservation of vorticity. Taking the Coriolis acceleration
into account changes the subtle balance between prograde and retrograde waves
in non-rotating stars. It also introduces new types of waves that are either
purely prograde or retrograde. We show in this paper where the local deposition
of angular momentum by such waves is important.Comment: 9 pages, 10 figures, accepted for publication by A&
Gyroscopic pumping of large-scale flows in stellar interiors, and application to Lithium Dip stars
The maintenance of large-scale differential rotation in stellar convective
regions by rotationally influenced convective stresses also drives large-scale
meridional flows by angular--momentum conservation. This process is an example
of ``gyroscopic pumping'', and has recently been studied in detail in the solar
context. An important question concerns the extent to which these
gyroscopically pumped meridional flows penetrate into nearby stably stratified
(radiative) regions, since they could potentially be an important source of
non-local mixing. Here we present an extensive study of the gyroscopic pumping
mechanism, using a combination of analytical calculations and numerical
simulations both in Cartesian geometry and in spherical geometry. The various
methods, when compared with one another, provide physical insight into the
process itself, as well as increasingly sophisticated means of estimating the
gyroscopic pumping rate. As an example of application, we investigate the
effects of this large-scale mixing process on the surface abundances of the
light elements Li and Be for stars in the mass range 1.3-1.5 solar masses
(so-called ``Li-dip stars''). We find that gyroscopic pumping is a very
efficient mechanism for circulating material between the surface and the deep
interior, so much in fact that it over-estimates Li and Be depletion by orders
of magnitude for stars on the hot side of the dip.However, when the diffusion
of chemical species back into the surface convection zone is taken into
account, a good fit with observed surface abundances of Li and Be as a function
of stellar mass in the Hyades cluster can be found for reasonable choices of
model parameters.Comment: Submitted to Ap
Compressive Pattern Matching on Multispectral Data
We introduce a new constrained minimization problem that performs template
and pattern detection on a multispectral image in a compressive sensing
context. We use an original minimization problem from Guo and Osher that uses
minimization techniques to perform template detection in a multispectral
image. We first adapt this minimization problem to work with compressive
sensing data. Then we extend it to perform pattern detection using a formal
transform called the spectralization along a pattern. That extension brings out
the problem of measurement reconstruction. We introduce shifted measurements
that allow us to reconstruct all the measurement with a small overhead and we
give an optimality constraint for simple patterns. We present numerical results
showing the performances of the original minimization problem and the
compressed ones with different measurement rates and applied on remotely sensed
data.Comment: Published in IEEE Transactions on Geoscience and Remote Sensin
Diagnoses to unravel secular hydrodynamical processes in rotating main sequence stars
(Abridged) We present a detailed analysis of the main physical processes
responsible for the transport of angular momentum and chemical species in the
radiative regions of rotating stars. We focus on cases where meridional
circulation and shear-induced turbulence only are included in the simulations.
Our analysis is based on a 2-D representation of the secular hydrodynamics,
which is treated using expansions in spherical harmonics. We present a full
reconstruction of the meridional circulation and of the associated fluctuations
of temperature and mean molecular weight along with diagnosis for the transport
of angular momentum, heat and chemicals. In the present paper these tools are
used to validate the analysis of two main sequence stellar models of 1.5 and 20
Msun for which the hydrodynamics has been previously extensively studied in the
literature. We obtain a clear visualization and a precise estimation of the
different terms entering the angular momentum and heat transport equations in
radiative zones. This enables us to corroborate the main results obtained over
the past decade by Zahn, Maeder, and collaborators concerning the secular
hydrodynamics of such objects. We focus on the meridional circulation driven by
angular momentum losses and structural readjustements. We confirm
quantitatively for the first time through detailed computations and separation
of the various components that the advection of entropy by this circulation is
very well balanced by the barotropic effects and the thermal relaxation during
most of the main sequence evolution. This enables us to derive simplifications
for the thermal relaxation on this phase. The meridional currents in turn
advect heat and generate temperature fluctuations that induce differential
rotation through thermal wind thus closing the transport loop.Comment: 16 pages, 18 figures. Accepted for publication in A&
Dissipation of a tide in a differentially rotating star
The orbital period of the binary pulsar PSR J0045-7319, which is located in
our neighbouring galaxy the Small Magellanic Cloud (SMC), appears to be
decreasing on a timescale of half a million year. This timescale is more than
two orders of magnitude smaller than what is expected from the standard theory
of tidal dissipation. Kumar and Quataert (1997a) proposed that this rapid
evolution can be understood provided that the neutron star's companion, a main
sequence B-star, has set up significant differential rotation. They showed that
the spin synchronization time for the B-star is similar to the orbit
circularization time, whereas the time to synchronize the surface rotation is
much shorter, and thus significant differential rotation in the star is indeed
expected. However, their calculation did not include the various processes that
can redistribute angular momentum in the star, possibly forcing it into solid
body rotation; in that case the dissipation of the tide would not be enhanced.
The goal of this paper is to include the redistribution of angular momentum in
the B-star due to meridional circulation and shear stresses and to calculate
the resulting rotation profile as a function of time. We find that although
angular momentum redistribution is important, the B-star continues to have
sufficient differential rotation so that tidal waves are entirely absorbed as
they arrive at the surface. The mechanism proposed by Kumar and Quataert to
speed up the orbital evolution of the SMC binary pulsar should therefore work
as suggested.Comment: 7 pages, LaTeX, 4 figures, Submitted to ApJ. Replaces
astro-ph/9707309 (minor changes
Effects of rotational mixing on the asteroseismic properties of solar-type stars
The influence of rotational mixing on the evolution and asteroseismic
properties of solar-type stars is studied. Rotational mixing changes the global
properties of a solar-type star with a significant increase of the effective
temperature resulting in a shift of the evolutionary track to the blue part of
the HR diagram. These differences are related to changes of the chemical
composition, because rotational mixing counteracts the effects of atomic
diffusion leading to larger helium surface abundances for rotating models than
for non-rotating ones. Higher values of the large frequency separation are then
found for rotating models than for non-rotating ones at the same evolutionary
stage, because the increase of the effective temperature leads to a smaller
radius and hence to an increase of the stellar mean density. Rotational mixing
also has a considerable impact on the structure and chemical composition of the
central stellar layers by bringing fresh hydrogen fuel to the core, thereby
enhancing the main-sequence lifetime. The increase of the central hydrogen
abundance together with the change of the chemical profiles in the central
layers result in a significant increase of the values of the small frequency
separations and of the ratio of the small to large separations for models
including shellular rotation. This increase is clearly seen for models with the
same age sharing the same initial parameters except for the inclusion of
rotation as well as for models with the same global stellar parameters and in
particular the same location in the HR diagram. By computing rotating models of
solar-type stars including the effects of a dynamo that possibly occurs in the
radiative zone, we find that the efficiency of rotational mixing is strongly
reduced when the effects of magnetic fields are taken into account, in contrast
to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&
3He-Driven Mixing in Low-Mass Red Giants: Convective Instability in Radiative and Adiabatic Limits
We examine the stability and observational consequences of mixing induced by
3He burning in the envelopes of first ascent red giants. We demonstrate that
there are two unstable modes: a rapid, nearly adiabatic mode that we cannot
identify with an underlying physical mechanism, and a slow, nearly radiative
mode that can be identified with thermohaline convection. We present
observational constraints that make the operation of the rapid mode unlikely to
occur in real stars. Thermohaline convection turns out to be fast enough only
if fluid elements have finger-like structures with a length to diameter ratio
l/d > 10. We identify some potentially serious obstacles for thermohaline
convection as the predominant mixing mechanism for giants. We show that
rotation-induced horizontal turbulent diffusion may suppress the 3He-driven
thermohaline convection. Another potentially serious problem for it is to
explain observational evidence of enhanced extra mixing. The 3He exhaustion in
stars approaching the red giant branch (RGB) tip should make the 3He mixing
inefficient on the asymptotic giant branch (AGB). In spite of this, there are
observational data indicating the presence of extra mixing in low-mass AGB
stars similar to that operating on the RGB. Overmixing may also occur in
carbon-enhanced metal-poor stars.Comment: 25 pages, 6 figures, modified version, accepted by Ap
WIYN/Hydra Detection of Lithium Depletion in F Stars of the Young Open Cluster M35 and Implications for the Development of the Lithium Gap
We report discovery of significant depletion of Li on the surfaces of F dwarf
stars in the 150-Myr-old open cluster M35, analagous to a feature in the
700-Myr-old Hyades cluster that has been referred to as the ``Li gap.'' We have
caught the gap in the act of forming: using high resolution, high S/N,
WIYN/Hydra observations, we detect Li in all but a few M35 F stars; the maximum
depletion lies at least 0.6-0.8 dex below minimally depleted (or undepleted)
stars. The M35 Li depletion region, a) is quite wide, with clear depletion seen
from 6000K to 6700K or hotter; b) shows a significant dispersion in Li
abundance at all T_eff, even with stars of the same T_eff; and c) contains
undepleted stars (as well as depleted ones) in the (narrow) classical Hyades
gap region, which itself shows no undepleted stars. All of these M35 Li
depletion properties support rotationally-induced slow mixing as the primary
physical mechanism that forms the gap, and argues against other proposed
mechanisms, particularly diffusion and steady main sequence mass loss. When
viewed in the context of the M35 Li depletion properties, the Hyades Li gap may
well be wider than is usually recognized.Comment: 14 Pages, 3 figures. Accepted to ApJ Letter
On the Coupling between Helium Settling and Rotation-Induced Mixing in Stellar Radiative Zones: II- Application to light elements in population I main-sequence stars
In the two previous papers of this series, we have discussed the importance
of t he -gradients due to helium settling on rotation-induced mixing,
first in a n approximate analytical way, second in a 2D numerical simulation.
We have found that, for slowly rotating low mass stars, a process of ``creeping
paralysis" in which the circulation and the diffusion are nearly frozen may
take place below the convective zone. Here we apply this theory to the case of
lithium and beryll ium in galactic clusters and specially the Hyades. We take
into account the rota tional braking with rotation velocities adjusted to the
present observations. We find that two different cells of meridional
circulation appear on the hot side of the "lithium dip" and that the "creeping
paralysis" process occurs, not dir ectly below the convective zone, but deeper
inside the radiative zone, at the to p of the second cell. As a consequence,
the two cells are disconnected, which ma y be the basic reason for the lithium
increase with effective temperature on thi s side of the dip. On the cool side,
there is just one cell of circulation and t he paralysis has not yet set down
at the age of the Hyades; the same modelisatio n accounts nicely for the
beryllium observations as well as for the lithium ones .Comment: 13 printed pages, 10 figures. ApJ, in press (April 20, 2003
- …