6,563 research outputs found

    Decay of the Z Boson into Scalar Particles

    Full text link
    In extensions of the standard model, light scalar particles are often possible because of symmetry considerations. We study the decay of the Z boson into such particles. In particular, we consider for illustration the scalar sector of a recently proposed model of the 17-keV neutrino which satisfies all laboratory, astrophysical, and cosmological constraints.Comment: 11 pages (2 figures, not included) (Revised, Oct 1992). Some equations have been corrected and 1 figure has been eliminate

    HI Narrow Line Absorption in Dark Clouds

    Get PDF
    We have used the Arecibo telescope to carry out an survey of 31 dark clouds in the Taurus/Perseus region for narrow absorption features in HI (λ\lambda 21cm) and OH (1667 and 1665 MHz) emission. We detected HI narrow self--absorption (HINSA) in 77% of the clouds that we observed. HINSA and OH emission, observed simultaneously are remarkably well correlated. Spectrally, they have the same nonthermal line width and the same line centroid velocity. Spatially, they both peak at the optically--selected central position of each cloud, and both fall off toward the cloud edges. Sources with clear HINSA feature have also been observed in transitions of CO, \13co, \c18o, and CI. HINSA exhibits better correlation with molecular tracers than with CI. The line width of the absorption feature, together with analyses of the relevant radiative transfer provide upper limits to the kinetic temperature of the gas producing the HINSA. Some sources must have a temperature close to or lower than 10 K. The correlation of column densities and line widths of HINSA with those characteristics of molecular tracers suggest that a significant fraction of the atomic hydrogen is located in the cold, well--shielded portions of molecular clouds, and is mixed with the molecular gas. The average number density ratio [HI]/[\h2] is 1.5×10−31.5\times10^{-3}. The inferred HI density appears consistent with but is slightly higher than the value expected in steady state equilibrium between formation of HI via cosmic ray destruction of H2_2 and destruction via formation of H2_2 on grain surfaces. The distribution and abundance of atomic hydrogen in molecular clouds is a critical test of dark cloud chemistry and structure, including the issues of grain surface reaction rates, PDRs, circulation, and turbulent diffusion.Comment: 40 pages, 10 figures, accepted by Ap

    Functional Allocation with Airborne Self-Separation Evaluated in a Piloted Simulation

    Get PDF
    A human-in-the-loop simulation experiment was designed and conducted to evaluate an airborne self-separation concept. The activity supports the National Aeronautics and Space Administration s (NASA) research focus on function allocation for separation assurance. The objectives of the experiment were twofold: (1) use experiment design features in common with a companion study of ground-based automated separation assurance to promote comparability, and (2) assess agility of self-separation operations in managing trajectory-changing events in high traffic density, en-route operations with arrival time constraints. This paper describes the experiment and presents initial results associated with subjective workload ratings and group discussion feedback obtained from the experiment s commercial transport pilot participants

    Manifestation of classical wave delays in a fully quantized model of the scattering of a single photon

    Get PDF
    We consider a fully quantized model of spontaneous emission, scattering, and absorption, and study propagation of a single photon from an emitting atom to a detector atom both with and without an intervening scatterer. We find an exact quantum analog to the classical complex analytic signal of an electromagnetic wave scattered by a medium of charged oscillators. This quantum signal exhibits classical phase delays. We define a time of detection which, in the appropriate limits, exactly matches the predictions of a classically defined delay for light propagating through a medium of charged oscillators. The fully quantized model provides a simple, unambiguous, and causal interpretation of delays that seemingly imply speeds greater than c in the region of anomalous dispersion.Comment: 18 pages, 4 figures, revised for clarity, typos corrrecte

    A homeostatic function of CXCR2 signalling in articular cartilage

    Get PDF
    Funding This work was funded by Arthritis Research UK (grants 17859, 17971, 19654), INNOCHEM EU FP6 (grant LSHB-CT-2005-51867), MRC (MR/K013076/1) and the William Harvey Research FoundationPeer reviewedPublisher PD

    How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?

    Get PDF
    The factors governing the rate of change in the amount of atmospheric water vapor are analyzed in simulations of climate change. The global-mean amount of water vapor is estimated to increase at a differential rate of 7.3% K[superscript − 1] with respect to global-mean surface air temperature in the multi-model mean. Larger rates of change result if the fractional change is evaluated over a finite change in temperature (e.g., 8.2% K [superscript − 1] for a 3 K warming), and rates of change of zonal-mean column water vapor range from 6 to 12% K [superscript − 1] depending on latitude. Clausius–Clapeyron scaling is directly evaluated using an invariant distribution of monthly-mean relative humidity, giving a rate of 7.4% K − 1 for global-mean water vapor. There are deviations from Clausius–Clapeyron scaling of zonal-mean column water vapor in the tropics and mid-latitudes, but they largely cancel in the global mean. A purely thermodynamic scaling based on a saturated troposphere gives a higher global rate of 7.9% K [superscript − 1]. Surface specific humidity increases at a rate of 5.7% K [superscript − 1], considerably lower than the rate for global-mean water vapor. Surface specific humidity closely follows Clausius–Clapeyron scaling over ocean. But there are widespread decreases in surface relative humidity over land (by more than 1% K − 1 in many regions), and it is argued that decreases of this magnitude could result from the land/ocean contrast in surface warming
    • 

    corecore