242 research outputs found

    Electro-optic techniques for longitudinal electron bunch diagnostics

    Get PDF
    Electro-optic techniques are becoming increasingly important in ultrafast electron bunch longitudinal diagnostics and have been successfully implemented at various accelerator laboratories. The longitudinal bunch shape is directly obtained from a single-shot, non-intrusive measurement of the temporal electric field profile of the bunch. Further- more, the same electro-optic techniques can be used to measure the temporal profile of terahertz / far-infrared opti- cal pulses generated by a CTR screen, at a bending magnet (CSR), or by an FEL. This contribution summarizes the re- sults obtained at FELIX and FLASH

    Electro-optic time profile monitors for femtosecond electron bunches at the soft x-ray free-electron laser FLASH

    Get PDF
    Precise measurements of the temporal profile of ultrashort electron bunches are of high interest for the optimization and operation of ultraviolet and x-ray free-electron lasers. The electro-optic (EO) technique has been applied for a single-shot direct visualization of the time profile of individual electron bunches at FLASH. This paper presents a thorough description of the experimental setup and the results. An absolute calibration of the EO technique has been performed utilizing simultaneous measurements with a transverse-deflecting radio-frequency structure that transforms the longitudinal bunch charge distribution into a transverse streak. EO signals as short as 60 fs (rms) have been observed using a gallium-phosphide (GaP) crystal, which is a new record in the EO detection of single electron bunches and close to the physical limit imposed by the EO material properties. The data are in quantitative agreement with a numerical simulation of the EO detection process

    Single-shot longitudinal bunch profile measurements at FLASH using electro-optic detection:experiment, simulation, and validation

    Get PDF
    At the superconducting linac of FLASH at DESY, we have installed an electro-optic (EO) experiment for single- shot, non-destructive measurements of the longitudinal electric charge distribution of individual electron bunches. The time profile of the electric bunch field is electro- optically encoded onto a chirped titanium-sapphire laser pulse. In the decoding step, the profile is retrieved either from a cross-correlation of the encoded pulse with a 30 fs laser pulse, obtained from the same laser (electro- optic temporal decoding, EOTD), or from the spectral intensity of the transmitted probe pulse (electro-optic spectral decoding, EOSD). At FLASH, the longitudinally compressed electron bunches have been measured during FEL operation with a resolution of better than 50 fs. The electro-optic process in gallium phosphide was numerically simulated using as input data the bunch shapes determined with a transverse-deflecting RF structure. In this contribution, we present electro-optically measured bunch profiles and compare them with the simulation

    Single shot longitudinal bunch profile measurements by temporally resolved electro-optical detection

    Get PDF
    For the high gain operation of a SASE FEL, extremely short electron bunches are essential to generate sufficiently high peak currents. At the superconducting linac of FLASH at DESY, we have installed an electro- optic measurement system to probe the time structure of the electric field of single ~100 fs electron bunches. In this technique, the field induced birefringence in an electro-optic crystal is encoded on a chirped picosecond laser pulse. The longitudinal electric field profile of the electron bunch is then obtained from the encoded optical pulse by a single shot cross correlation with a 35 fs laser pulse using a second harmonic crystal (temporal decoding). An electro-optical signal exhibiting a feature with 118 fs FWHM was observed, and this is close to the limit of resolution due to the material properties of the particular electro-optic crystal used. The measured electro-optic signals are compared to bunch shapes simultaneously measured with a transverse deflecting cavity

    Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    Full text link
    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear Instruments and Methods

    Relation between coupled map lattices and kinetic Ising models

    Full text link
    A spatially one dimensional coupled map lattice possessing the same symmetries as the Miller Huse model is introduced. Our model is studied analytically by means of a formal perturbation expansion which uses weak coupling and the vicinity to a symmetry breaking bifurcation point. In parameter space four phases with different ergodic behaviour are observed. Although the coupling in the map lattice is diffusive, antiferromagnetic ordering is predominant. Via coarse graining the deterministic model is mapped to a master equation which establishes an equivalence between our system and a kinetic Ising model. Such an approach sheds some light on the dependence of the transient behaviour on the system size and the nature of the phase transitions.Comment: 15 pages, figures included, Phys. Rev. E in pres

    Superconducting Accelerator Magnets

    Get PDF
    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements on field quality in large storage rings. The operational experience with the superconducting HERA collider serves as an illustration. Finally superconducting correction coils and practical construction and fabrication methods of accelerator magnets are discussed. The physical and technical principles described in the book are substantiated with a wealth of experimental data on multipoles, persistent- and eddy-current effects, quench performance and much more.The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is s

    Complete Solution of the Kinetics in a Far-from-equilibrium Ising Chain

    Full text link
    The one-dimensional Ising model is easily generalized to a \textit{genuinely nonequilibrium} system by coupling alternating spins to two thermal baths at different temperatures. Here, we investigate the full time dependence of this system. In particular, we obtain the evolution of the magnetisation, starting with arbitrary initial conditions. For slightly less general initial conditions, we compute the time dependence of all correlation functions, and so, the probability distribution. Novel properties, such as oscillatory decays into the steady state, are presented. Finally, we comment on the relationship to a reaction-diffusion model with pair annihilation and creation.Comment: Submitted to J. Phys. A (Letter to the editor

    Surface Superconductivity in Niobium for Superconducting RF Cavities

    Full text link
    A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.Comment: 15 pages, 21 figures, DESY-Report 2004-02
    corecore