15 research outputs found

    Nanocharacterization in Dentistry

    Get PDF
    About 80% of US adults have some form of dental disease. There are a variety of new dental products available, ranging from implants to oral hygiene products that rely on nanoscale properties. Here, the application of AFM (Atomic Force Microscopy) and optical interferometry to a range of dentistry issues, including characterization of dental enamel, oral bacteria, biofilms and the role of surface proteins in biochemical and nanomechanical properties of bacterial adhesins, is reviewed. We also include studies of new products blocking dentine tubules to alleviate hypersensitivity; antimicrobial effects of mouthwash and characterizing nanoparticle coated dental implants. An outlook on future “nanodentistry” developments such as saliva exosomes based diagnostics, designing biocompatible, antimicrobial dental implants and personalized dental healthcare is presented

    Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    Get PDF
    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions

    Nanomechanical Properties of Dead or Alive Single-Patterned Bacteria

    No full text
    International audienceThe main goal of this paper is to probe mechanical properties of living and dead bacteria via atomic force microscopy (AFM) indentation experimentations. Nevertheless, the prerequisite for bioAFM study is the adhesion of the biological sample on a surface. Although AFM has now been used in microbiology for 20 years, the immobilization of micro-organisms is still challenging. Immobilizing a single cell, without the need for chemical fixation has therefore constituted our second purpose. Highly ordered arrays of single living bacteria were generated over the millimeter scale by selective adsorption of bacteria onto micrometric chemical patterns. The chemically engineered template surfaces were prepared with a microcontact printing process, and different functionalizations of the patterns by incubation were investigated. Thanks to this original immobilization strategy, the Young moduli of the same cell were measured using force spectroscopy before and after heating (45 °C, 20 min). The cells with a damaged membrane (after heating) present a Young modulus twice as high as that of healthy bacteria

    Detection and localization of single molecular recognition events using atomic force microscopy

    No full text
    Because of its piconewton force sensitivity and nanometer positional accuracy, the atomic force microscope (AFM) has emerged as a powerful tool for exploring the forces and the dynamics of the interaction between individual Ligands and receptors, either on isolated molecules or on cellular surfaces. These studies require attaching specific biomolecules or cells on AFM tips and on solid supports and measuring the unbinding forces between the modified surfaces using AFM force spectroscopy. In this review, we describe the current methodology for molecular recognition studies using the AFM, wit h an emphasis on strategies available for preparing AFM tips and samples, and on procedures for detecting and localizing single molecular recognition events

    Using nanotechniques to explore microbial surfaces.

    No full text
    Our current understanding of microbial surfaces owes much to the development of electron microscopy techniques. Yet, a crucial limitation of electron microscopy is that it cannot be used to examine biological structures directly in aqueous solutions. In recent years, however, atomic force microscopy (AFM) has provided a range of new opportunities for viewing and manipulating microbial surfaces in their native environments. Examples of AFM-based analyses include visualizing conformational changes in single membrane proteins, the real-time observation of cell-surface dynamics, analysing the unfolding of cell-surface proteins and detecting individual cell-surface receptors. These analyses have contributed to our understanding of the structure–function relationships of cell surfaces and will hopefully allow new applications to be developed for AFM in medicine and biotechnology
    corecore