240 research outputs found
Aging syndrome genes and premature coronary artery disease
BACKGROUND: Vascular disease is a feature of aging, and coronary vascular events are a major source of morbidity and mortality in rare premature aging syndromes. One such syndrome is caused by mutations in the lamin A/C (LMNA) gene, which also has been implicated in familial insulin resistance. A second gene related to premature aging in man and in murine models is the KLOTHO gene, a hypomorphic variant of which (KL-VS) is significantly more common in the first-degree relatives of patients with premature coronary artery disease (CAD). We evaluated whether common variants at the LMNA or KLOTHO genes are associated with rigorously defined premature CAD. METHODS: We identified 295 patients presenting with premature acute coronary syndromes confirmed by angiography. A control group of 145 patients with no evidence of CAD was recruited from outpatient referral clinics. Comprehensive haplotyping of the entire LMNA gene, including the promoter and untranslated regions, was performed using a combination of TaqMan(® )probes and direct sequencing of 14 haplotype-tagging single nucleotide polymorphisms (SNPs). The KL-VS variant of the KLOTHO gene was typed using restriction digest of a PCR amplicon. RESULTS: Two SNPs that were not in Hardy Weinberg equilibrium were excluded from analysis. We observed no significant differences in allele, genotype or haplotype frequencies at the LMNA or KLOTHO loci between the two groups. In addition, there was no evidence of excess homozygosity at the LMNA locus. CONCLUSION: Our data do not support the hypothesis that premature CAD is associated with common variants in the progeroid syndrome genes LMNA and KLOTHO
Studi confraternali: orientamenti, problemi, testimonianze
Il volume raccoglie interventi di studiosi italiani e stranieri miranti a offrire una panoramica di percorsi storiografici e di problematiche relativi alla storia del movimento confraternale, così come sono emersi nell'ambito di discipline storiche, sociali, giuridiche, letterarie e artistiche sviluppatesi nel corso del Novecento. I contributi si riferiscono al contesto storico dell'Europa occidentale, con più specifico riguardo per l'Italia, nel periodo compreso fra medioevo e prima età moderna. La raccolta si articola in quattro sezioni: Individui e gruppi, che sonda l'emergere di un interesse verso le comunità confraternali all'interno di ambiti di studio come la storia dei gruppi sociali, del mondo rurale, delle donne, dei giovani; L'inquadramento giuridico e istituzionale, che affronta problemi di legittimità e di assetto istituzionale; L'economia della carità, che analizza il rapporto delle confraternite con gli enti ospedalieri, le modalità amministrative dei patrimoni confraternali, le culture di governo che sottostanno a politiche assistenziali di cui le confraternite sono tramite principale; Testimonianze teatrali, musicali, artistiche, documentarie dedicata alle fonti che le confraternite hanno saputo trasmettere
The Mutational Spectrum in a Cohort of Charcot-Marie-Tooth Disease Type 2 among the Han Chinese in Taiwan
BACKGROUND: Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous group of inherited axonal neuropathies. The aim of this study was to extensively investigate the mutational spectrum of CMT2 in a cohort of patients of Han Chinese. METHODOLOGY AND PRINCIPAL FINDINGS: Genomic DNA from 36 unrelated Taiwanese CMT2 patients of Han Chinese descent was screened for mutations in the coding regions of the MFN2, RAB7, TRPV4, GARS, NEFL, HSPB1, MPZ, GDAP1, HSPB8, DNM2, AARS and YARS genes. Ten disparate mutations were identified in 14 patients (38.9% of the cohort), including p.N71Y in AARS (2.8%), p.T164A in HSPB1 (2.8%), and p.[H256R]+[R282H] in GDAP1 (2.8%) in one patient each, three NEFL mutations in six patients (16.7%) and four MFN2 mutations in five patients (13.9%). The following six mutations were novel: the individual AARS, HSPB1 and GDAP1 mutations and c.475-1G>T, p.L233V and p.E744M mutations in MFN2. An in vitro splicing assay revealed that the MFN2 c.475-1G>T mutation causes a 4 amino acid deletion (p.T159_Q162del). Despite an extensive survey, the genetic causes of CMT2 remained elusive in the remaining 22 CMT2 patients (61.1%). CONCLUSIONS AND SIGNIFICANCE: This study illustrates the spectrum of CMT2 mutations in a Taiwanese CMT2 cohort and expands the number of CMT2-associated mutations. The relevance of the AARS and HSPB1 mutations in the pathogenesis of CMT2 is further highlighted. Moreover, the frequency of the NEFL mutations in this study cohort was unexpectedly high. Genetic testing for NEFL and MFN2 mutations should, therefore, be the first step in the molecular diagnosis of CMT2 in ethnic Chinese
Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment
Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment
Clinical and Molecular Characterization of Ataxia with Oculomotor Apraxia Patients In Saudi Arabia
<p>Abstract</p> <p>Background</p> <p>Autosomal recessive ataxias represent a group of clinically overlapping disorders. These include ataxia with oculomotor apraxia type1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2) and ataxia-telangiectasia-like disease (ATLD). Patients are mainly characterized by cerebellar ataxia and oculomotor apraxia. Although these forms are not quite distinctive phenotypically, different genes have been linked to these disorders. Mutations in the <it>APTX </it>gene were reported in AOA1 patients, mutations in <it>SETX </it>gene were reported in patients with AOA2 and mutations in <it>MRE11 </it>were identified in ATLD patients. In the present study we describe in detail the clinical features and results of genetic analysis of 9 patients from 4 Saudi families with ataxia and oculomotor apraxia.</p> <p>Methods</p> <p>This study was conducted in the period between 2005-2010 to clinically and molecularly characterize patients with AOA phenotype. Comprehensive sequencing of all coding exons of previously reported genes related to this disorder (<it>APTX</it>, <it>SETX </it>and <it>MRE11</it>).</p> <p>Results</p> <p>A novel nonsense truncating mutation c.6859 C > T, R2287X in <it>SETX </it>gene was identified in patients from one family with AOA2. The previously reported missense mutation W210C in <it>MRE11 </it>gene was identified in two families with autosomal recessive ataxia and oculomotor apraxia.</p> <p>Conclusion</p> <p>Mutations in <it>APTX </it>, <it>SETX </it>and <it>MRE11 </it>are common in patients with autosomal recessive ataxia and oculomotor apraxia. The results of the comprehensive screening of these genes in 4 Saudi families identified mutations in <it>SETX </it>and <it>MRE11 </it>genes but failed to identify mutations in <it>APTX </it>gene.</p
Defective Lamin A-Rb Signaling in Hutchinson-Gilford Progeria Syndrome and Reversal by Farnesyltransferase Inhibition
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare premature aging disorder caused by a de novo heterozygous point mutation G608G (GGC>GGT) within exon 11 of LMNA gene encoding A-type nuclear lamins. This mutation elicits an internal deletion of 50 amino acids in the carboxyl-terminus of prelamin A. The truncated protein, progerin, retains a farnesylated cysteine at its carboxyl terminus, a modification involved in HGPS pathogenesis. Inhibition of protein farnesylation has been shown to improve abnormal nuclear morphology and phenotype in cellular and animal models of HGPS. We analyzed global gene expression changes in fibroblasts from human subjects with HGPS and found that a lamin A-Rb signaling network is a major defective regulatory axis. Treatment of fibroblasts with a protein farnesyltransferase inhibitor reversed the gene expression defects. Our study identifies Rb as a key factor in HGPS pathogenesis and suggests that its modulation could ameliorate premature aging and possibly complications of physiological aging
Farnesylated Nuclear Proteins Kugelkern and Lamin Dm0 Affect Nuclear Morphology by Directly Interacting with the Nuclear Membrane
Nuclear shape changes are observed during a variety of developmental processes, pathological conditions and ageing. Here, the molecular mechanism is analyzed how the farnesylated nuclear proteins interact with the nuclear envelope and deform the phospholipid bilayer
The Mutant Form of Lamin A that Causes Hutchinson-Gilford Progeria Is a Biomarker of Cellular Aging in Human Skin
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals
Lamin A Rod Domain Mutants Target Heterochromatin Protein 1α and β for Proteasomal Degradation by Activation of F-Box Protein, FBXW10
Lamins are major structural proteins of the nucleus and contribute to the organization of various nuclear functions. Mutations in the human lamin A gene cause a number of highly degenerative diseases, collectively termed as laminopathies. Cells expressing lamin mutations exhibit abnormal nuclear morphology and altered heterochromatin organization; however, the mechanisms responsible for these defects are not well understood.The lamin A rod domain mutants G232E, Q294P and R386K are either diffusely distributed or form large aggregates in the nucleoplasm, resulting in aberrant nuclear morphology in various cell types. We examined the effects of these lamin mutants on the distribution of heterochromatin protein 1 (HP1) isoforms. HeLa cells expressing these mutants showed a heterogeneous pattern of HP1alpha and beta depletion but without altering HP1gamma levels. Changes in HP1alpha and beta were not observed in cells expressing wild-type lamin A or mutant R482L, which assembled normally at the nuclear rim. Treatment with proteasomal inhibitors led to restoration of levels of HP1 isoforms and also resulted in stable association of lamin mutants with the nuclear periphery, rim localization of the inner nuclear membrane lamin-binding protein emerin and partial improvement of nuclear morphology. A comparison of the stability of HP1 isoforms indicated that HP1alpha and beta displayed increased turnover and higher basal levels of ubiquitination than HP1gamma. Transcript analysis of components of the ubiquitination pathway showed that a specific F-box protein, FBXW10 was induced several-fold in cells expressing lamin mutants. Importantly, ectopic expression of FBXW10 in HeLa cells led to depletion of HP1alpha and beta without alteration of HP1gamma levels.Mislocalized lamins can induce ubiquitin-mediated proteasomal degradation of certain HP1 isoforms by activation of FBXW10, a member of the F-box family of proteins that is involved in E3 ubiquitin ligase activity
Requirements for Efficient Proteolytic Cleavage of Prelamin A by ZMPSTE24
The proteolytic maturation of the nuclear protein lamin A by the zinc metalloprotease ZMPSTE24 is critical for human health. The lamin A precursor, prelamin A, undergoes a multi-step maturation process that includes CAAX processing (farnesylation, proteolysis and carboxylmethylation of the C-terminal CAAX motif), followed by ZMPSTE24-mediated cleavage of the last 15 amino acids, including the modified C-terminus. Failure to cleave the prelamin A "tail", due to mutations in either prelamin A or ZMPSTE24, results in a permanently prenylated form of prelamin A that underlies the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) and related progeroid disorders.Here we have investigated the features of the prelamin A substrate that are required for efficient cleavage by ZMPSTE24. We find that the C-terminal 41 amino acids of prelamin A contain sufficient context to allow cleavage of the tail by ZMPSTE24. We have identified several mutations in amino acids immediately surrounding the cleavage site (between Y646 and L647) that interfere with efficient cleavage of the prelamin A tail; these mutations include R644C, L648A and N650A, in addition to the previously reported L647R. Our data suggests that 9 of the 15 residues within the cleaved tail that lie immediately upstream of the CAAX motif are not critical for ZMPSTE24-mediated cleavage, as they can be replaced by the 9 amino acid HA epitope. However, duplication of the same 9 amino acids (to increase the distance between the prenyl group and the cleavage site) impairs the ability of ZMPSTE24 to cleave prelamin A.Our data reveals amino acid preferences flanking the ZMPSTE24 cleavage site of prelamin A and suggests that spacing from the farnesyl-cysteine to the cleavage site is important for optimal ZMPSTE24 cleavage. These studies begin to elucidate the substrate requirements of an enzyme activity critical to human health and longevity
- …