146 research outputs found

    The Gattini cameras for optical sky brightness measurements at Dome C, Antarctica

    Get PDF
    The Gattini cameras are two site testing instruments for the measurement of optical sky brightness, large area cloud cover and auroral detection of the night sky above the high altitude Dome C site in Antarctica. The cameras have been operating since installation in January 2006 and are currently at the end of the first Antarctic winter season. The cameras are transit in nature and are virtually identical both adopting Apogee Alta CCD detectors. By taking frequent images of the night sky we obtain long term cloud cover statistics, measure the sky background intensity as a function of solar and lunar altitude and phase and directly measure the spatial extent of bright aurora if present and when they occur. The full data set will return in December 2006 however a limited amount of data has been transferred via the Iridium network enabling preliminary data reduction and system evaluation. An update of the project is presented together with preliminary results from data taken since commencement of the winter season

    NEOSTEL: the telescope detail design program for the ESA optical ground network dedicated to NEO discovery and tracking

    Get PDF
    The Fly-Eye architecture applied for a Space Debris and NEO Surveillance and Tracking optical telescope has been originally proposed by CGS and further refined in the framework of the Space Situational Awareness (SSA) Preparatory Program studies. The high level architecture of a Telescope based on the Fly-Eye concept has been defined in the TELAD Study. Following TELAD conceptual design, the activities of NEOSTEL aim now at generating the Detailed Design of a NEO Survey Telescope based on the Fly-Eye concept. All components of the telescope are designed at detailed level to satisfy the specific requirements for the Survey and Follow Up of the Near Earth Objects. The NEO Survey Telescope detailed design generated under this Program will be directly utilized for the manufacturing of the first prototype, planned to be launched by the SSA Program in the second half of 2015. In addition, the result of the Detailed Design will produce the documentation necessary to prepare the future site that will host the NEO Survey Telescope prototype as well as the high level architecture of the data processing SW that will be required at the telescope site. The product of the prototypation activity will then constitute a full Italian key Optical Core Technology, dedicated to the NEO thematic but also extendable to the SST Segment, therefore offering possibility of application both at Civil and at Institutional level. Furthermore the Fly-Eye Telescope Technology can actively collaborate with a dedicated Space Segment, opening the way to a complete and autonomous EU System

    First AMBER/VLTI observations of hot massive stars

    Get PDF
    AMBER is the first near infrared focal instrument of the VLTI. It combines three telescopes and produces spectrally resolved interferometric measures. This paper discusses some preliminary results of the first scientific observations of AMBER with three Unit Telescopes at medium (1500) and high (12000) spectral resolution. We derive a first set of constraints on the structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum and the LBV Eta Carinae

    High Resolution Images of Orbital Motion in the Trapezium Cluster: First Scientific Results from the MMT Deformable Secondary Mirror Adaptive Optics System

    Get PDF
    We present the first scientific images obtained with a deformable secondary mirror adaptive optics system. We utilized the 6.5m MMT AO system to produce high-resolution (FWHM=0.07'') near infrared (1.6 um) images of the young (~1 Myr) Orion Trapezium theta 1 Ori cluster members. A combination of high spatial resolution and high signal to noise allowed the positions of these stars to be measured to within ~0.003'' accuracies. Including previous speckle data (Weigelt et al. 1999), we analyze a six year baseline of high-resolution observations of this cluster. Over this baseline we are sensitive to relative proper motions of only ~0.002''/yr (4.2 km/s at 450 pc). At such sensitivities we detect orbital motion in the very tight theta 1 Ori B2B3 (52 AU separation) and theta 1 Ori A1A2 (94 AU separation) systems. Such motions are consistent with those independently observed by Schertl et al. (2003) with speckle interferometry, giving us confidence that these very small (~0.002''/yr) orbital motions are real. All five members of the theta 1 Ori B system appear likely gravitationally bound. The very lowest mass member of the theta 1 Ori B system (B4) has K' ~11.66 and an estimated mass of ~0.2 Msun. There was very little motion (4+/-15 km/s) detected of B4 w.r.t B1 or B2, hence B4 is possibly part of the theta 1 Ori B group. We suspect that if this very low mass member is physically associated it most likely is in an unstable (non-hierarchical) orbital position and will soon be ejected from the group. The theta 1 Ori B system appears to be a good example of a star formation ``mini-cluster'' which may eject the lowest mass members of the cluster in the near future. This ``ejection'' process could play a major role in the formation of low mass stars and brown dwarfs.Comment: To appear in the December 10, 2003 issue of the Astrophysical Journal 21 pages, 14 figures (some in color, but print OK in B&W

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    ARGOS: the laser guide star system for the LBT

    Get PDF
    ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.12 page(s

    The performance of the blue prime focus Large Binocular Camera at the Large Binocular Telescope

    Full text link
    We present the characteristics and some early scientific results of the first instrument at the Large Binocular Telescope (LBT), the Large Binocular Camera (LBC). Each LBT telescope unit will be equipped with similar prime focus cameras. The blue channel is optimized for imaging in the UV-B bands and the red channel for imaging in the VRIz bands. The corrected field-of-view of each camera is approximately 30 arcminutes in diameter, and the chip area is equivalent to a 23x23 arcmin2 field. In this paper we also present the commissioning results of the blue channel. The scientific and technical performance of the blue channel was assessed by measurement of the astrometric distortion, flat fielding, ghosts, and photometric calibrations. These measurements were then used as input to a data reduction pipeline applied to science commissioning data. The measurements completed during commissioning show that the technical performance of the blue channel is in agreement with original expectations. Since the red camera is very similar to the blue one we expect similar performance from the commissioning that will be performed in the following months in binocular configuration. Using deep UV image, acquired during the commissioning of the blue camera, we derived faint UV galaxy-counts in a ~500 sq. arcmin. sky area to U(Vega)=26.5. These galaxy counts imply that the blue camera is the most powerful UV imager presently available and in the near future in terms of depth and extent of the field-of-view. We emphasize the potential of the blue camera to increase the robustness of the UGR multicolour selection of Lyman break galaxies at redshift z~3.Comment: Accepted for publication in A&A. Uses aa.cls, 10 pages, 10 figures. Zero points changed in Table

    Responses of grape berry anthocyanin and tritratable acidity to the projected climate change across the Western Australian wine regions

    Get PDF
    More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ∼5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period.The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3–12 % and 9–33 % for the northern wine regions by 2030 and 2070, respectively while 2–18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9–18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions in median TA are likely to occur in the present day warmer wine regions, up to 40 % for Chardonnay followed by 15 % and 12 % for Shiraz and Cabernet Sauvignon, respectively, by 2070 under the high warming projection (csiro_mk3_5). It is concluded that, under existing management practices, some of the key grape attributes that are integral to premium wine production will be affected negatively by a warming climate, but the magnitudes of the impacts vary across the established wine regions, varieties, the magnitude of warming and future periods considered

    An asymmetry detected in the disk of Kappa CMa with the AMBER/VLTI

    Get PDF
    International audienceAims. We study the geometry and kinematics of the circumstellar environment of the Be star Kappa CMa in the Br gamma emission line and its nearby continuum. Methods. We use the VLTI/AMBER instrument operating in the K band which provides a spatial resolution of about 6 mas with a spectral resolution of 1500 to study the kinematics within the disk and to infer its rotation law. In order to obtain more kinematical constraints we also use an high spectral resolution Pa beta line profile obtain in December 2005 at the Observatorio do Pico do Dios, Brazil and we compile V/R line profile variations and spectral energy distribution data points from the literature. Results. Using differential visibilities and differential phases across the Br gamma line we detect an asymmetry in the disk. Moreover, we found that kappa CMa seems difficult to fit within the classical scenario for Be stars, illustrated recently by alpha Arae observations, i.e. a fast rotating B star close to its breakup velocity surrounded by a Keplerian circumstellar disk with an enhanced polar wind. Finally we discuss the possibility for kappa CMa to be a critical rotator with a Keplerian rotating disk and try to see if the detected asymmetry can be interpreted within the "one-armed" viscous disk framework
    corecore