2,655 research outputs found
Magnetometer suitable for Earth field measurement based on transient atomic response
We describe the development of a simple atomic magnetometer using Rb
vapor suitable for Earth magnetic field monitoring. The magnetometer is based
on time-domain determination of the transient precession frequency of the
atomic alignment around the measured field. A sensitivity of 1.5 nT/
is demonstrated on the measurement of the Earth magnetic field in the
laboratory. We discuss the different parameters determining the magnetometer
precision and accuracy and predict a sensitivity of 30 pT/Comment: 6 pages, 5 figure
A diode laser stabilization scheme for 40Ca+ single ion spectroscopy
We present a scheme for stabilizing multiple lasers at wavelengths between
795 and 866 nm to the same atomic reference line. A reference laser at 852 nm
is stabilized to the Cs D2 line using a Doppler-free frequency modulation
technique. Through transfer cavities, four lasers are stabilized to the
relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked
laser is measured to be 123 kHz with respect to an independent atomic
reference, the Rb D1 line. This stability is confirmed by the comparison of an
excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation
model. The measured Allan variance of 10^(-22) at 10 s demonstrates a high
degree of stability for time scales up to 100 s.Comment: 8 pages, 11 figure
Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings
Position sensitive beam monitors are indispensable for the beam diagnostics
in storage rings. Apart from their applications in the measurements of beam
parameters, they can be used in non-destructive in-ring decay studies of
radioactive ion beams as well as enhancing precision in the isochronous mass
measurement technique. In this work, we introduce a novel approach based on
cavities with elliptical cross-section, in order to compensate for existing
limitations in ion storage rings. The design is aimed primarily for future
heavy ion storage rings of the FAIR project. The conceptual design is discussed
together with simulation results.Comment: Added definition of Uv and Pdiss in the introduction section. Added
Mode numbering in table 1 and figure 1 for more clarity. Corrected one wrong
figure reference. Other minor typo correction
All sky Northern Hemisphere 10(15) EV gamma-ray survey
Flux limits in the range 10 to the minus 13th power-10 to the minus 12 power/sq cm/s have been obtained by observing Cerenkov flashes from small air showers. During 1983, a 3.5 sigma excess of showers was observed during the phase interval 0.2 to 0.3 of the 4.8h period of Cygnus X-3, but no excess was found in 1984 observations
Limits on deeply penetrating particles in the 10(17) eV cosmic ray flux
Deeply penetrating particles in the 10 to the 17th power eV cosmic ray flux were investigated. No such events were found in 8.2 x 10 to the 6th power sec of running time. Limits were set on the following: quark-matter in the primary cosmic ray flux; long-lived, weakly interacting particles produced in p-air collisions; the astrophysical neutrino flux. In particular, the neutrino flux limit at 10 to the 17th power eV implies that z, the red shift of maximum activity is 10 in the model of Hill and Schramm
The structure of EAS at E 0.1 EeV
The ratio of extensive air showers (EAS) total shower energy in the electromagnetic channel (E em) to the size of the shower at maximum development (N max) from a direct measurement of shower longitudinal development using the air fluorescence technique was calculated. The values are not inconsistent with values based upon track length integrals of the Gaisser-Hillas formula for shower development or the known relation between shower energy and size at maximum for pure electromagnetic cascades. Using Linsley's estimates for undetected shower energy based on an analysis of a wide variety of cosmic ray data, the following relation for total shower energy E vs N max is obtained. The Gaisser Hillas implied undetected shower energy fractions
Distal motor latency and residuallatency as sensitive markersof anti-MAG polyneuropathy
Abstract.: There is debate whether the terminal latency index (TLI) is a sensitive marker for polyneuropathy with anti-myelinassociated-glycoprotein antibodies (anti-MAGP). We examined 6 patients with an anti-MAGP and 6 patients with a chronic inflammatory demyelinating polyneuropathy (CIDP). The electroneurographic features studied were: distal compound motor action potential (CMAP), distal motor latency (DML), motor conduction velocity (MCV) elbow to wrist (distal MCV), MCV axilla to elbow (proximal MCV), MCV distal/proximal, terminal latency index (TLI), residual latency (RL), F-wave, and modified F ratio.We found significant differences between anti-MAGP and CIDP for DML and for RL.No significant differences were found for TLI and the other measures. The TLI values were not significant probably because our patients had a longer duration of disease,which supports the hypothesis of a distal to proximal progression of conduction slowing over time. We propose that a residual latency >4.0 and a distal motor latency >7.0 are strongly suggestive for an anti- MAG
Fractal templates in the escape dynamics of trapped ultracold atoms
We consider the dynamic escape of a small packet of ultracold atoms launched
from within an optical dipole trap. Based on a theoretical analysis of the
underlying nonlinear dynamics, we predict that fractal behavior can be seen in
the escape data. This data would be collected by measuring the time-dependent
escape rate for packets launched over a range of angles. This fractal pattern
is particularly well resolved below the Bose-Einstein transition temperature--a
direct result of the extreme phase space localization of the condensate. We
predict that several self-similar layers of this novel fractal should be
measurable and we explain how this fractal pattern can be predicted and
analyzed with recently developed techniques in symbolic dynamics.Comment: 11 pages with 5 figure
Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases
We present and characterize an experimental system in which we achieve the
integration of an ultrahigh finesse optical cavity with a Bose-Einstein
condensate (BEC). The conceptually novel design of the apparatus for the
production of BECs features nested vacuum chambers and an in-vacuo magnetic
transport configuration. It grants large scale spatial access to the BEC for
samples and probes via a modular and exchangeable "science platform". We are
able to produce \87Rb condensates of five million atoms and to output couple
continuous atom lasers. The cavity is mounted on the science platform on top of
a vibration isolation system. The optical cavity works in the strong coupling
regime of cavity quantum electrodynamics and serves as a quantum optical
detector for single atoms. This system enables us to study atom optics on a
single particle level and to further develop the field of quantum atom optics.
We describe the technological modules and the operation of the combined BEC
cavity apparatus. Its performance is characterized by single atom detection
measurements for thermal and quantum degenerate atomic beams. The atom laser
provides a fast and controllable supply of atoms coupling with the cavity mode
and allows for an efficient study of atom field interactions in the strong
coupling regime. Moreover, the high detection efficiency for quantum degenerate
atoms distinguishes the cavity as a sensitive and weakly invasive probe for
cold atomic clouds
- …
