16,108 research outputs found

    Upper limit on mh in the MSSM and M-SUGRA vs. prospective reach of LEP

    Get PDF
    The upper limit on the lightest CP-even Higgs boson mass, mh, is analyzed within the MSSM as a function of tan(beta) for fixed mtop and Msusy. The impact of recent diagrammatic two-loop results on this limit is investigated. We compare the MSSM theoretical upper bound on mh with the lower bound obtained from experimental searches at LEP. We estimate that with the LEP data taken until the end of 1999, the region mh < 108.2 GeV can be excluded at the 95% confidence level. This corresponds to an excluded region 0.6 <= tan(beta) <= 1.9 within the MSSM for mtop = 174.3 GeV and Msusy <= 1 TeV. The final exclusion sensitivity after the end of LEP, in the year 2000, is also briefly discussed. Finally, we determine the upper limit on mh within the Minimal Supergravity (M-SUGRA) scenario up to the two-loop level, consistent with radiative electroweak symmetry breaking. We find an upper bound of mh \approx 127 GeV for mtop = 174.3 GeV in this scenario, which is slightly below the bound in the unconstrained MSSM.Comment: 10 pages, 3 figure

    Linear Invariant Systems Theory for Signal Enhancement

    Get PDF
    This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na análise de técnicas de sub-espaço. A resposta em frequência dos filtros resultantes da decomposição em valores singulares é obtida aplicando as propriedades dos sistemas LTI

    An ALMA study of the Orion Integral Filament : I. Evidence for narrow fibers in a massive cloud

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods. We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N 2H + (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or ~2000 AU). Results. From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of ~0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions. Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers.Peer reviewedFinal Published versio

    Atomic jet from SMM1 (FIRS1) in Serpens uncovers non-coeval binary companion

    Full text link
    We report on the detection of an atomic jet associated with the protostellar source SMM1 (FIRS1) in Serpens. The jet is revealed in [FeII] and [NeII] line maps observed with Spitzer/IRS, and further confirmed in HiRes IRAC and MIPS images. It is traced very close to SMM1 and peaks at ~5 arcsec" from the source at a position angle of $\sim 125 degrees. In contrast, molecular hydrogen emission becomes prominent at distances > 5" from the protostar and extends at a position angle of 160 degrees. The morphological differences suggest that the atomic emission arises from a companion source, lying in the foreground of the envelope surrounding the embedded protostar SMM1. In addition the molecular and atomic Spitzer maps disentangle the large scale CO (3-2) emission observed in the region into two distinct bipolar outflows, giving further support to a proto-binary source setup. Analysis at the peaks of the [FeII] jet show that emission arises from warm and dense gas (T ~1000 K, n(electron) 10^5 - 10^6 cm^-3). The mass flux of the jet derived independently for the [FeII] and [NeII] lines is 10^7 M(sun)/yr, pointing to a more evolved Class~I/II protostar as the driving source. All existing evidence converge to the conclusion that SMM1 is a non-coeval proto-binary source.Comment: 10 pages, 7 figures, 1 table. Accepted for publication in Astronomy \& Astrophysic

    Synthesis of new azole phosphonate precursors for fuel cells proton exchange membranes

    Get PDF
    Herein we present the synthesis and characterization of new phosphonate-, bisphosphonate- and hydroxybisphosphonatebenzimidazole derivatives substituted at the N-1 position and new regioisomers phosphonate-, bisphosphonate-, and hydroxybisphosphonatebenzotriazole derivatives substituted at N-1 or N-2 positions. The compounds were characterized by NMR and IR spectroscopies, and mass spectrometry (low and high resolution) allowing the assignment of their structure, including the identification of regioisomers. These new azole monomers will be precursors for a mesoporous silica host to produce novel membrane materials with high proton conductivity for intermediate temperature proton exchange membrane fuel cells

    Intrapatient variability of the pupillary pain index to remifentanil

    Get PDF
    info:eu-repo/semantics/publishedVersio

    New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC

    Get PDF
    ABSTRACT: The global demands of energy are still increasing alongside many civilizational problems, notably the effects on the environment due to the overuse of traditional energy sources based on fossil fuels. New cleaner, renewable sources for sustainable energy systems are a key challenge of the 21st century society.N/

    Chemical stability of new nafion membranes doped with bisphosphonic acids under Fenton oxidative conditions

    Get PDF
    ABSTRACT: The development of new proton exchange membranes for PEM technology in fuel cells and electrolysers with increased durability is paramount to system's lifetime and scalability. In this work, new modified Nafion membranes doped with bisphosphonic acids are proposed with increased resilience to chemical degradation by H2O2/Fe2+, mimicking ex-situ radical attack to membrane structure. Relevant properties were evaluated throughout Fenton's test using fluoride ion release and gravimetry determinations, and by ATR-FTIR spectros-copy and SEM before and after the chemical degradation. The new membranes showed a very good chemical stability after oxidative degradation under Fenton's test conditions at 80 degrees C, with more durability than Nafion 115 commercial membrane. After chemical degradation, the proton conduction of the membranes was assessed through EIS which reveals a decrease in the proton conductivity of all membranes, with the new modified membranes showing a smaller decrease of their proton conduction properties than Nafion 115 membrane. Fluoride ion release, weight loss measurements and ATR-FTIR spectros-copy data analysis suggest degradation of the side chain of the ionomer.info:eu-repo/semantics/publishedVersio

    New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC

    Get PDF
    ABSTRACT: In this work, new doped Nafion membranes for PEMFC are prepared by casting with 1 wt% loading of the prepared indazole- and condensed pyrazolebisphosphonic acids (AzBPs). The new membranes were analysed by ATR-FTIR spectroscopy and their morphology was examined by SEM. Membranes were evaluated for water uptake and ion exchange capacity (IEC), and their hydration number was estimated. The proton conduction properties of the modified membranes were evaluated by electrochemical impedance spectroscopy (EIS), at different temperatures (30, 40, 50 and 60 °C) and relative humidity (RH) (40, 60 and 80%). The proton conductivities of all membranes increase with increasing temperature and RH. Also, all new membranes doped with AzBPs exhibited higher proton conductivities than Nafion N-115, used as a reference and tested at the same experimental conditions, with values up to 1.5-fold. Results show that the incorporation of AzBPs dopants on Nafion membranes enhances the proton conduction throughout the modified membranes. The best proton conductivity was observed for membranes with AzBP1 as dopant, with a value of 94 mS cm-1. These results indicate that the Nafion membranes doped with indazole- and condensed pyrazolebisphosphonic acids are a promising approach for new membranes for PEMFC with improved proton conductivity.info:eu-repo/semantics/publishedVersio

    Disc Clearing of Young Stellar Objects: Evidence for Fast Inside-out Dispersal

    Full text link
    The time-scale over which and the modality by which young stellar objects (YSOs) disperse their circumstellar discs dramatically influences the eventual formation and evolution of planetary systems. By means of extensive radiative transfer (RT) modelling, we have developed a new set of diagnostic diagrams in the infrared colour-colour plane (K-[24] vs. K-[8]), to aid with the classification of the evolutionary stage of YSOs from photometric observations. Our diagrams allow the differentiation of sources with unevolved (primordial) discs from those evolving according to different clearing scenarios (e.g. homologous depletion vs. inside-out dispersal), as well as from sources that have already lost their disc. Classification of over 1500 sources in 15 nearby star-forming regions reveals that approximately 39 % of the sources lie in the primordial disc region, whereas between 31 % and 32 % disperse from the inside-out and up to 22 % of the sources have already lost their disc. Less than 2 % of the objects in our sample lie in the homogeneous draining regime. Time-scales for the transition phase are estimated to be typically a few 10^5 years independent of stellar mass. Therefore, regardless of spectral type, we conclude that currently available infrared photometric surveys point to fast (of order 10 % of the global disc lifetime) inside-out clearing as the preferred mode of disc dispersal.Comment: 31 pages, 21 figures, 6 tables, accepted for publication in MNRA
    corecore