1,134 research outputs found

    On the geometric-arithmetic mean inequality for matrices

    Get PDF
    In this paper refinements and converses of matrix forms of the geometric-arithmetic mean inequality are given

    Experimental Demonstration of Squeezed State Quantum Averaging

    Get PDF
    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.Comment: 4 pages, 5 figure

    Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem

    Full text link
    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, which aims to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. Its disturbances are monitored and dealt by the diagnostics subsystem. This subsystem consists of several modules, and one of these is the magnetic diagnostics system, which includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at the positions of the test masses. However, since the magnetometers are located far from the positions of the test masses, the magnetic field at their positions must be interpolated. It has been recently shown that because there are not enough magnetic channels, classical interpolation methods fail to derive reliable measurements at the positions of the test masses, while neural network interpolation can provide the required measurements at the desired accuracy. In this paper we expand these studies and we assess the reliability and robustness of the neural network interpolation scheme for variations of the locations and possible offsets of the magnetometers, as well as for changes in environmental conditions. We find that neural networks are robust enough to derive accurate measurements of the magnetic field at the positions of the test masses in most circumstances

    Impact of controlled vacuum induced surface freezing on the freeze drying of human plasma

    Get PDF
    During the freezing step of a typical freeze drying process, the temperature at which nucleation is induced is generally stochastically distributed, resulting in undesired within-batch heterogeneity. Controlled nucleation techniques have been developed to address this problem; these make it possible to trigger the formation of ice crystals at the same time and temperature in all the batch. Here, the controlled nucleation technique known as vacuum induced surface freezing is compared to spontaneous freezing for the freeze drying of human plasma, a highly concentrated system commonly stored in a dried state. The potency of Factor VIII (FVIII), a sensitive, labile protein present in plasma, and the reconstitution time of the dried cakes are evaluated immediately after freeze drying, and after 1, 3, 6 or 9 months storage at different degradation temperatures. We show that the application of controlled nucleation significantly reduces the reconstitution time and in addition helps to improve FVIII stability

    UK Large-scale Wind Power Programme from 1970 to 1990: the Carmarthen Bay experiments and the Musgrove Vertical-Axis Turbines

    Get PDF
    This article describes the development of the Musgrove Vertical Axis Wind Turbine (VAWT) concept, the UK ‘Carmarthen Bay’ wind turbine test programme, and UK government’s wind power programme to 1990. One of the most significant developments in the story of British wind power occurred during the 1970s, 1980s, and 1990s, with the development of the Musgrove vertical axis wind turbine and its inclusion within the UK Government’s wind turbine test programme. Evolving from a supervisor’s idea for an undergraduate project at Reading University, the Musgrove VAWT was once seen as an able competitor to the horizontal axis wind systems that were also being encouraged at the time by both the UK government and the Central Electricity Generating Board, the then nationalised electricity utility for England and Wales. During the 1980s and 1990s the most developed Musgrove VAWT system, along with three other commercial turbine designs was tested at Carmarthen Bay, South Wales as part of a national wind power test programme. From these developmental tests, operational data was collected and lessons learnt, which were incorporated into subsequent wind power operations.http://dx.doi.org/10.1260/03095240677860621

    Turning collegial governance on its head : symbolic violence, hegemony and the academic board

    Full text link
    This article draws on Bourdieu’s theorisation of domination and Gramsci’s notions of hegemony within the context of a larger empirical study of Australian university academic governance, and of academic boards (also known as academic senates or faculty senates) in particular. Reporting data that suggest a continued but radically altered form of collegial governance in which hegemony is exercised by management rather than by the professor, it theorises the domination of academic boards within western democratic universities. However, traditional collegial governance is also dependent upon a community of scholars, a role historically played by the academic board. In view of the suggested transition in collegial governance and the resultant convergence of academic work and management, the article concludes with questions about whether academic boards can continue to serve as communities of scholars in future

    Geophysical studies with laser-beam detectors of gravitational waves

    Full text link
    The existing high technology laser-beam detectors of gravitational waves may find very useful applications in an unexpected area - geophysics. To make possible the detection of weak gravitational waves in the region of high frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser interferometers must permanently monitor, record and compensate much larger external interventions that take place in the region of low frequencies of geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal perturbations of land and gravity, normal mode oscillations of Earth, oscillations of the inner core of Earth, etc. will inevitably affect the performance of the interferometers and, therefore, the information about them will be stored in the data of control systems. We specifically identify the low-frequency information contained in distances between the interferometer mirrors (deformation of Earth) and angles between the mirrors' suspensions (deviations of local gravity vectors and plumb lines). We show that the access to the angular information may require some modest amendments to the optical scheme of the interferometers, and we suggest the ways of doing that. The detailed evaluation of environmental and instrumental noises indicates that they will not prevent, even if only marginally, the detection of interesting geophysical phenomena. Gravitational-wave instruments seem to be capable of reaching, as a by-product of their continuous operation, very ambitious geophysical goals, such as observation of the Earth's inner core oscillations.Comment: 29 pages including 8 figures, modifications and clarifications in response to referees' comments, to be published in Class. Quant. Gra
    • 

    corecore