On the geometric-arithmetic mean inequality for matrices

M. Alić*, P. S. Bullen \dagger, J. E. Pečarić ${ }^{\ddagger}$ and V. Volenec ${ }^{\S}$

Abstract

In this paper refinements and converses of matrix forms of the geometric-arithmetic mean inequality are given.

Key words: arithmetic, geometric means, Hermitian matrices Sažetak.U radu se daje poboljšanje i konverzija nejednakosti između geometrijske i aritmetičke sredine za matrice.

Ključne riječi: aritmetičke i geometrijske sredine, Hermiteove matrice

AMS subject classifications: 26D15, 15A45
Received June 30, 1997 Accepted October 10, 1997

1. Introduction

Let $\alpha \in] 0,1[$ and let A, B be two $n \times n$ positive definite Hermitian matrices. The weighted arithmetic, geometric and harmonic means of A and B are respectively:

$$
\begin{gather*}
A \nabla B=\alpha A+(1-\alpha) B ; \quad A \# B=B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2} ; \\
A!B=\left(\alpha A^{-1}+(1-\alpha) B^{-1}\right)^{-1} \tag{1}
\end{gather*}
$$

The matrix form of the geometric-arithmetic mean inequality is well known:

$$
\begin{equation*}
A!B \leq A \# B \leq A \nabla B \tag{2}
\end{equation*}
$$

where the matrix inequality $A \geq B$ means that $A-B$ is positive semi-definite.
A converse inequality to a part of (2),

$$
A!B \leq A \nabla B
$$

was obtained recently in [1].
In this paper we obtain further converses and refinements of (2).

[^0]
2. Preliminary lemmas

An essential tool in the proof of our main converse result is the following converse of the geometric- arithmetic mean inequality due to Dočev.

Lemma 1. If $0<m \leq a_{i} \leq M, 1 \leq i \leq n, w_{i}>0,1 \leq i \leq n$ and $W_{n}=\sum_{i=1}^{n} w_{i}$ then

$$
\begin{equation*}
\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} a_{i} \leq K\left(\prod_{i=1}^{n} a_{i}^{w_{i}}\right)^{1 / W_{n}} \tag{3}
\end{equation*}
$$

where if $\beta=M / m$ then

$$
\begin{equation*}
K=\frac{(\beta-1) \beta^{1 /(\beta-1)}}{e \log \beta} \tag{4}
\end{equation*}
$$

Furthermore, K regarded as a function of M is increasing, and regarded as a function of m is decreasing.

Proof. The inequality (3) is stated in [2, p.124]. The method of proof is that of $[2$, p.28, Remark(14) $]$; not as stated in the first reference. The last remark is an easy consequence of the proof and the concavity of the logarithmic function.

The following generalization of Bernoulli's inequality is due to Gerber [3].
Lemma 2. If $\alpha \in \mathbb{R}, n \in \mathbb{N}$, and $x>-1$ then

$$
\begin{equation*}
\operatorname{sgn}\left((1+x)^{\alpha}-\sum_{i=0}^{n}\binom{\alpha}{i} x^{i}\right)=\operatorname{sgn}\left(\binom{\alpha}{n+1} x^{n+1}\right) \tag{5}
\end{equation*}
$$

Substituting $t-1$ for x in (5) leads to

$$
\begin{gather*}
\binom{\alpha}{n+1}\left(t^{\alpha}-\sum_{i=0}^{n}\binom{\alpha}{i}(t-1)^{i}\right) \geq 0 \quad \text { if } \quad t \geq 1 \tag{6}\\
(-1)^{n+1}\binom{\alpha}{n+1}\left(t^{\alpha}-\sum_{i=0}^{n}\binom{\alpha}{i}(t-1)^{i}\right) \geq 0 \quad \text { if } \quad 1 \geq t>0 \tag{7}
\end{gather*}
$$

3. Converse results

Theorem 1. Let A and B be two positive definite Hermitian matrices and let $0<$ $\alpha<1$, then

$$
A \nabla B \leq K(A \# B)
$$

where K is given by (4) with $\beta=\max \left\{\lambda_{1}, \lambda_{n}^{-1}\right\}$, where $\lambda_{1} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of $B^{-1 / 2} A B^{-1 / 2}$.

Proof. Apply Lemma 1 with $n=2, w_{1}=\alpha, w_{2}=1-\alpha, a_{1}=\lambda_{i}, a_{2}=1$ to get

$$
\alpha \lambda_{i}+1-\alpha \leq K_{i} \lambda_{i}^{\alpha}
$$

where K_{i} is given by (4) with

$$
\beta_{i}=\frac{\max \left\{\lambda_{i}, 1\right\}}{\min \left\{\lambda_{i}, 1\right\}}=\max \left\{\lambda_{i}, \lambda_{i}^{-1}\right\}
$$

Since $\lambda_{1} \geq \cdots \geq \lambda_{n}$ we have, from Lemma 1 that $K_{i} \leq K, 1 \leq i \leq n$ where K is given by (4) with β as in the statement of the theorem. Hence

$$
\begin{equation*}
\alpha \lambda_{i}+1-\alpha \leq K \lambda_{i}^{\alpha}, 1 \leq i \leq n \tag{8}
\end{equation*}
$$

If a positive definite matrix C has the representation $C=\Gamma D_{\lambda} \Gamma^{*}$, where Γ is unitary and D_{λ} is the diagonal matrix $\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, then (8) implies that

$$
\begin{equation*}
\alpha D_{\lambda}+(1-\alpha) I \leq K D_{\lambda}^{\alpha} \tag{9}
\end{equation*}
$$

Pre- and post-multiplication of (9) by Γ and Γ^{*} respectively gives

$$
\begin{equation*}
\alpha C+(1-\alpha) I \leq K C^{\alpha} \tag{10}
\end{equation*}
$$

Then setting $C=B^{-1 / 2} A B^{-1 / 2}$ in (10) we get

$$
\begin{equation*}
\alpha B^{-1 / 2} A B^{-1 / 2}+(1-\alpha) I \leq\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} \tag{11}
\end{equation*}
$$

Pre- and post-multiplication of (11) by $B^{1 / 2}$ completes the proof of the theorem.

Theorem 2. With the hypotheses and notations of Theorem 1,

$$
A \# B \leq K(A!B)
$$

Proof. Apply Theorem 1 with A, B replaced by A^{-1}, B^{-1}, respectively.

4. Refinements

In this section we use the notations in section 1 but allow α to be an arbitrary real number.

Theorem 3. Let A and B be two positive definite Hermitian matrices and let $\alpha \in \mathbb{R}$ then

$$
\begin{align*}
& \binom{\alpha}{n+1}(A \# B-A \nabla B) \leq\binom{\alpha}{n+1} \sum_{i=2}^{n}\binom{\alpha}{i} B^{1 / 2}\left(B^{-1 / 2}(A-B) B^{-1 / 2}\right)^{i} B^{1 / 2} \text { if } A>B \\
& (-1)^{n+1}\binom{\alpha}{n+1}(A \# B-A \nabla B) \geq(-1)^{n+1}\binom{\alpha}{n+1} \sum_{i=2}^{n}\binom{\alpha}{i} B^{1 / 2}\left(B^{-1 / 2}(A-B) B^{-1 / 2}\right)^{i} B^{1 / 2} \\
& \text { if } A<B . \tag{13}
\end{align*}
$$

Proof. Let C be a positive definite Hermitian matrix then as in the proof of Theorem 1, but using (6) and (7), we get

$$
\begin{equation*}
\binom{\alpha}{n+1}\left(C^{\alpha}-\sum_{i=0}^{n}\binom{\alpha}{i}(C-I)^{i}\right) \geq 0 \quad \text { if } \quad C>I \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{n+1}\binom{\alpha}{n+1}\left(C^{\alpha}-\sum_{i=0}^{n}\binom{\alpha}{i}(C-I)^{i}\right) \geq 0 \quad \text { if } \quad I>C>0 \tag{15}
\end{equation*}
$$

Simple rewriting of (14) and (15) give:

$$
\begin{align*}
& \binom{\alpha}{n+1}\left(C^{\alpha}-\alpha C-(1-\alpha) I\right) \geq\binom{\alpha}{n+1} \sum_{i=2}^{n}\binom{\alpha}{i}(C-I)^{i} \quad \text { if } \quad C>I \tag{16}\\
& (-1)^{n+1}\binom{\alpha}{n+1}\left(C^{\alpha}-\alpha s C-(1-\alpha) I\right) \geq(-1)^{n+1}\binom{\alpha}{n+1} \sum_{i=2}^{n}\binom{\alpha}{i}(C-I)^{i} \tag{17}\\
& \text { if } \quad I>C>0
\end{align*}
$$

Substitution in (16) and 17) of $C=B^{-1 / 2} A B^{-1 / 2}$ and then pre- and postmultiplication by $B^{1 / 2}$ leads to (12) and (13).

The special case $n=1$ of Theorem 3 was proved in [4].
The case $n=2$ of Theorem 3 gives
Corollary 1. Let A and B be two positive definite Hermitian matrices and let $\alpha \in \mathbb{R}$. If $A \geq B$ and if either $0<\alpha<1$ or $\alpha>2$, then

$$
A \nabla B-A \# B \leq \frac{\alpha(1-\alpha)}{2} B^{1 / 2}\left(B^{-1 / 2}(A-B) B^{-1 / 2}\right)^{2} B^{1 / 2}
$$

If $\alpha<0$ or $1<\alpha<2$, then the reverse inequality holds.
Using a generalization of Bernoulli's inequality proved in [5] we can generalize the corollary as follows.

Theorem 4. Let A and B be two positive definite Hermitian matrices and let $\alpha, K \in \mathbb{R}$. If $A \geq K B$, with $0<K \leq 1$ and if either $0<\alpha<1$ or $\alpha>2$, then

$$
A \nabla B-A \# B \leq \frac{\alpha(1-\alpha)}{2} K^{\alpha-2} B^{1 / 2}\left(B^{-1 / 2}(A-B) B^{-1 / 2}\right)^{2} B^{1 / 2}
$$

If $\alpha<0$ or $1<\alpha<2$, then the reverse inequality holds. The inequality also holds if $A \leq K B$, with $K \geq 1$ and if either $\alpha<0$ or $1<\alpha<2$; the reverse inequality then holds if $0<\alpha<1$ or $\alpha>2$.

References

[1] B. Mond, J. E. PečARIć, Reverse forms of a convex matrix inequality, Lin. Alg. Appl. 220(1995), 359-364.
[2] P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and Their Inequalities, D. Reidel, Dordrecht, 1988.
[3] L. Gerber, An extension of Bernoulli's inequality, Amer. Math. Montly 75(1968), 875-876.
[4] M. Alić, B. Mond, J. E. PečArić, V. Volenec The arithmetic-geometricharmonic means and related inequalities, to appear.
[5] D. S. Mitrinović, J. E. PečArić, On Bernoulli's inequality, Facta Univ., Ser. Math. Inf. 5(1990), 55-56.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia, e-mail: mladen.alic@cromath.math.hr
 ${ }^{\dagger}$ Department of Mathematics, University of British Columbia, Vancouver BC, Canada V6T1Z2, e-mail: bullen@math.ubc.ca
 \ddagger Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10 000 Zagreb, Croatia, e-mail: pecaric@mahazu.hazu.hr
 ${ }^{\S}$ Department of Mathematics University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@cromath.math.hr

