36 research outputs found
LUNEX5 : A FEL PROJECT TOWARDS THE FIFTH GENERATION IN FRANCE
ISBN978-3-95450-117-5 - http://accelconf.web.cern.ch/AccelConf/FEL2011/papers/tupa09.pdfInternational audienc
Erratum to: EuPRAXIA Conceptual Design Report â Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A
Self-amplified spontaneous emission for a single pass free-electron laser
SPARC (acronym of "Sorgente Pulsata ed Amplificata di Radiazione Coerente", i.e. Pulsed and Amplified Source of Coherent Radiation) is a single pass free-electron laser designed to obtain high gain amplification at a radiation wavelength of 500 nm. Self-amplified spontaneous emission has been observed driving the amplifier with the high-brightness beam of the SPARC linac. We report measurements of energy, spectra, and exponential gain. Experimental results are compared with simulations from several numerical codes
LUNEX5 : A FEL PROJECT TOWARDS THE FIFTH GENERATION IN FRANCE
ISBN978-3-95450-117-5 - http://accelconf.web.cern.ch/AccelConf/FEL2011/papers/tupa09.pdfInternational audienc
Publisher Correction: Control of laser plasma accelerated electrons for light sources
The original version of this Article contained an error in the last sentence of the first paragraph of the Introduction and incorrectly read âA proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime in equation 11, nx(n-ÎČ) x ÎČ: n the two times and beta the two times should be bold since they are vectorsin Eq. 12, ÎČ should be bold as well.â The correct version is âA proper electron beam control is one of the main challenges towards the Graal of developing a compact alternative of X-ray free-electron lasers by coupling LWFA gigaelectron-volts per centimetre acceleration gradient with undulators in the amplification regime.âThis has been corrected in both the PDF and HTML versions of the Article
Control of laser plasma accelerated electrons for light sources
Electron beam quality in accelerators is crucial for light source application. Here the authors demonstrate beam conditioning of laser plasma electrons thanks to a specific transport line enabling the control of divergence, energy, steering and dispersion and the application to observe undulator radiation