478 research outputs found

    Statistical Complexity and Nontrivial Collective Behavior in Electroencephalografic Signals

    Full text link
    We calculate a measure of statistical complexity from the global dynamics of electroencephalographic (EEG) signals from healthy subjects and epileptic patients, and are able to stablish a criterion to characterize the collective behavior in both groups of individuals. It is found that the collective dynamics of EEG signals possess relative higher values of complexity for healthy subjects in comparison to that for epileptic patients. To interpret these results, we propose a model of a network of coupled chaotic maps where we calculate the complexity as a function of a parameter and relate this measure with the emergence of nontrivial collective behavior in the system. Our results show that the presence of nontrivial collective behavior is associated to high values of complexity; thus suggesting that similar dynamical collective process may take place in the human brain. Our findings also suggest that epilepsy is a degenerative illness related to the loss of complexity in the brain.Comment: 13 pages, 3 figure

    HYDROCARBONS SYNTHESIS FROM A SIMULATED BIOSYNGAS FEED OVER FE/SIO2, CATALYSTS

    Full text link

    Silicon carbide particulates incorporated into microalloyed steel surface using TIG: microstructure and properties

    Get PDF
    Surface metal matrix composites have been developed to enhance properties such as erosion, wear and corrosion of alloys. In this study, ~5 ”m or ~75 ”m SiC particulates were preplaced on a microalloyed steel. Single track surface zones were melted by a tungsten inert gas torch, and the effect of two heat inputs, 420Jmm-1 and 840 Jmm-1,compared. The results showed that the samples melted using 420Jmm-1 were crack-free. Pin-on-disk wear testing under dry sliding conditions were conducted. The effects of load and sliding velocity were used to characterise the performance of the crack-free samples. Microstructural and X-ray diffraction studies of the surface showed that the SiC had dissolved, and that martensite, was the main phase influencing the hardness

    Vortices and domain walls in a Chern-Simons theory with magnetic moment interaction

    Get PDF
    We study the structure and properties of vortices in a recently proposed Abelian Maxwell-Chern-Simons model in 2+12 +1 dimensions. The model which is described by gauge field interacting with a complex scalar field, includes two parity and time violating terms: the Chern-Simons and the anomalous magnetic terms. Self-dual relativistic vortices are discussed in detail. We also find one dimensional soliton solutions of the domain wall type. The vortices are correctly described by the domain wall solutions in the large flux limit.Comment: To be published in Phys RevD 23 pages, RevTex, 5 figure

    Model-driven Test Engineering: A Practical Analysis in the AQUA-WS Project

    Get PDF
    The effective application of test phases has been one of the most relevant, critical and cost phases in the life cycle of software projects in the last years. During the test phase, the test team has to assure the quality of the system and the concordance with the initial requirements of the system. The model driven paradigm is offering suitable results in some areas and the test phase could be one of them. This paper presents how the application of this paradigm can help to improve this aspect in the functional test generation and it analyses the experience in a real project developed under this approach.Ministerio de Ciencia e InnovaciĂłn TIN2010-20057-C03-02Ministerio de Ciencia e InnovaciĂłn TIN 2010-12312-EJunta de AndalucĂ­a TIC-578

    Optimal opportunistic screening of atrial fibrillation using pulse palpation in cardiology outpatient clinics: Who and how

    Full text link
    Atrial fibrillation (AF) remain a prevalent undiagnosed condition frequently encountered in primary care.We aimed to find the parameters that optimize the diagnostic accuracy of pulse palpation to detect AF. We also aimed to create a simple algorithm for selecting which individuals would benefit from pulse palpation and, if positive, receive an ECG to detect AF.Nurses from four Cardiology outpatient clinics palpated 7,844 pulses according to a randomized list of arterial territories and durations of measure and immediately followed by a 12-lead ECG, which we used as the reference standard. We calculated the sensitivity and specificity of the palpation parameters. We also assessed whether diagnostic accuracy depended on the nurse's experience or on a list of clinical factors of the patients. With this information, we estimated the positive predictive values and false omission rates according to very few clinical factors readily available in primary care (age, sex, and diagnosis of heart failure) and used them to create the algorithm.The parameters associated with the highest diagnostic accuracy were palpation of the radial artery and classifying as irregular those palpations in which the nurse was uncertain about pulse regularity or unable to palpate pulse (sensitivity = 79%; specificity = 86%). Specificity decreased with age. Neither the nurse's experience nor any investigated clinical factor influenced diagnostic accuracy. We provide the algorithm to select the ≄40 years old individuals that would benefit from a pulse palpation screening: a) do nothing in <60 years old individuals without heart failure; b) do ECG in ≄70 years old individuals with heart failure; c) do radial pulse palpation in the remaining individuals and do ECG if the pulse is irregular or you are uncertain about its regularity or unable to palpate it.Opportunistic screening for AF using optimal pulse palpation in candidate individuals according to a simple algorithm may have high effectiveness in detecting AF in primary care

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources

    Challenges of viticulture adaptation to global change: tackling the issue from the roots

    Get PDF
    Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental‐friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil‐hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil–root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil‐borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding.info:eu-repo/semantics/publishedVersio
    • 

    corecore