166 research outputs found

    Influence of membrane-cortex linkers on the extrusion of membrane tubes

    Get PDF
    The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here, we investigate the role of membrane-cortex linkers on the extrusion of membrane tubes using computer simulations and experiments. In simulations, we find that the force for tube extrusion has a nonlinear dependence on the density of membrane-cortex attachments: at a range of low and intermediate linker densities, the force is not significantly influenced by the presence of the membrane-cortex attachments and resembles that of the bare membrane. For large concentrations of linkers, however, the force substantially increases compared with the bare membrane. In both cases, the linkers provided membrane tubes with increased stability against coalescence. We then pulled tubes from HEK cells using optical tweezers for varying expression levels of the membrane-cortex attachment protein Ezrin. In line with simulations, we observed that overexpression of Ezrin led to an increased extrusion force, while Ezrin depletion had a negligible effect on the force. Our results shed light on the importance of local protein rearrangements for membrane reshaping at nanoscopic scales

    Real-world gait speed estimation, frailty and handgrip strength: a cohort-based study.

    Get PDF
    Gait speed is a reliable outcome measure across multiple diagnoses, recognized as the 6th vital sign. The focus of the present study was on assessment of gait speed in long-term real-life settings with the aim to: (1) demonstrate feasibility in large cohort studies, using data recorded with a wrist-worn accelerometer device; (2) investigate whether the walking speed assessed in the real-world is consistent with expected trends, and associated with clinical scores such as frailty/handgrip strength. This cross-sectional study included n = 2809 participants (1508 women, 1301 men, [45-75] years old), monitored with a wrist-worn device for 13 consecutive days. Validated algorithms were used to detect the gait bouts and estimate speed. A set of metrics were derived from the statistical distribution of speed of gait bouts categorized by duration (short, medium, long). The estimated usual gait speed (1-1.6 m/s) appears consistent with normative values and expected trends with age, gender, BMI and physical activity levels. Speed metrics significantly improved detection of frailty: AUC increase from 0.763 (no speed metrics) to 0.798, 0.800 and 0.793 for the 95th percentile of individual's gait speed for bout durations < 30, 30-120 and > 120 s, respectively (all p < 0.001). Similarly, speed metrics also improved the prediction of handgrip strength: AUC increase from 0.669 (no speed metrics) to 0.696, 0.696 and 0.691 for the 95th percentile of individual's gait speed for bout durations < 30, 30-120 and > 120 s, respectively (all p < 0.001). Forward stepwise regression showed that the 95th percentile speed of gait bouts with medium duration (30-120 s) to be the best predictor for both conditions. The study provides evidence that real-world gait speed can be estimated using a wrist-worn wearable system, and can be used as reliable indicator of age-related functional decline

    Optimal spectral lines for measuring chromospheric magnetic fields

    Get PDF
    This paper identifies spectral lines from X-ray to infrared wavelengths which are optimally suited to measuring vector magnetic fields as high as possible in the solar atmosphere. Instrumental and Earth's atmospheric properties, as well as solar abundances, atmospheric properties and elementary atomic physics are considered without bias towards particular wavelengths or diagnostic techniques. While narrowly-focused investigations of individual lines have been reported in detail, no assessment of the comparative merits of all lines has ever been published. Although in the UV, on balance the Mg+ h and k lines near 2800 Angstroms are optimally suited to polarimetry of plasma near the base of the solar corona. This result was unanticipated, given that longer-wavelength lines offer greater sensitivity to the Zeeman effect. While these lines sample optical depths photosphere to the coronal base, we argue that cores of multiple spectral lines provide a far more discriminating probe of magnetic structure as a function of optical depth than the core and inner wings of a strong line. Thus, together with many chromospheric lines of Fe+ between 2585 and the h line at 2803 Angstrom, this UV region promises new discoveries concerning how the magnetic fields emerge, heat, and accelerate plasma as they battle to dominate the force and energy balance within the poorly-understood chromosphere.Comment: Accepted for publication in the Astrophysical Journal. 12 pages, 2 figures, and 1 tabl

    Epidemiological characteristics of nosocomial infections in Chisinau

    Get PDF
    Department of Epidemiology, Nicolae Testemitsanu State University of Medicine and Pharmacy, Center of Public Health, Chisinau, the Republic of MoldovaBackground: Nosocomial infections (IN) remain a serious problem for public health in modern medicine both at the global level and for all health care institutions of the Republic of Moldova. This paper provides the analysis of hospital morbidity in Chisinau in the period of 2008-2012. Material and methods: The analysis shows that the growth and the highest incidence of nosocomial infections take place in pregnant women – from 8.6 cases per 1000 births in 2008 to 18.9 cases per 1000 births in 2012. Results: Hospital morbidity is caused by a significant increase of the number of caesarean births which contribute to the highest level of endometritis being 16.1 cases per 1000 births, compared with 10.8 cases per 1000 cases of vaginal delivery. The level of hospital morbidity among surgical patients and infants is lower – 2.3 cases per 1000 operations and 4.1 cases per 1000 births of live children. In the general structure of nosocomial infections purulent septic infections prevail, their share being 93.7-97.1%. The etiology of septic purulent infections is very wide, including 18 species of opportunistic pathogens. Conclusion: More frequently the associations of different microorganisms have been isolated, which have made up 23,6%, S. aureus – 17,9%, E. Coli – 16,9%, S. epidermidis – 10,3%, P. aeruginosa – 9,3%. The isolated microorganisms are resistant to 36.4% of the mostly used antibiotics. The causes of hospital-acquired infections are varied and require the concerted actions on the side of medical institutions and the Center of Public Health

    739 observed NEAs and new 2-4m survey statistics within the EURONEAR network

    Full text link
    We report follow-up observations of 477 program Near-Earth Asteroids (NEAs) using nine telescopes of the EURONEAR network having apertures between 0.3 and 4.2 m. Adding these NEAs to our previous results we now count 739 program NEAs followed-up by the EURONEAR network since 2006. The targets were selected using EURONEAR planning tools focusing on high priority objects. Analyzing the resulting orbital improvements suggests astrometric follow-up is most important days to weeks after discovery, with recovery at a new opposition also valuable. Additionally we observed 40 survey fields spanning three nights covering 11 sq. degrees near opposition, using the Wide Field Camera on the 2.5m Isaac Newton Telescope (INT), resulting in 104 discovered main belt asteroids (MBAs) and another 626 unknown one-night objects. These fields, plus program NEA fields from the INT and from the wide field MOSAIC II camera on the Blanco 4m telescope, generated around 12,000 observations of 2,000 minor planets (mostly MBAs) observed in 34 square degrees. We identify Near Earth Object (NEO) candidates among the unknown (single night) objects using three selection criteria. Testing these criteria on the (known) program NEAs shows the best selection methods are our epsilon-miu model which checks solar elongation and sky motion and the MPC's NEO rating tool. Our new data show that on average 0.5 NEO candidates per square degree should be observable in a 2m-class survey (in agreement with past results), while an average of 2.7 NEO candidates per square degree should be observable in a 4m-class survey (although our Blanco statistics were affected by clouds). At opposition just over 100 MBAs (1.6 unknown to every 1 known) per square degree are detectable to R=22 in a 2m survey based on the INT data, while our two best ecliptic Blanco fields away from opposition lead to 135 MBAs (2 unknown to every 1 known) to R=23.Comment: Published in Planetary and Space Sciences (Sep 2013

    Structural and Mechanical Properties of Hot Rolled CuAlBe Non-Spark Alloy Explosion

    Get PDF
    Explosion protection is of particular importance for safety as explosions also endanger the health of workers due to the uncontrolled effects of flames and pressure, the presence of harmful reaction products and the consumption of oxygen in the ambient air breathed by workers. CuAlBe alloy is proposed as a solution for mechanical actuators such as gears that work in environments with possible explosive atmosphere. Made of CuBe master alloy and pure aluminum in a induction furnace the material present large grains in melted state. After the hot rolling (heated 600s at 900°C) of the ingots small variation of chemical composition was observed based on the oxidation of the material, appearance of small cracks on the edges and a preferential orientation of the grains along the lamination direction. Scanning electron microscopy (SEM) was used to characterize the microstructural states of CuAlBe as laminated and heat treated states

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore