124 research outputs found

    Critical Lattice Size Limit for Synchronized Chaotic State in 1-D and 2-D Diffusively Coupled Map Lattices

    Full text link
    We consider diffusively coupled map lattices with PP neighbors (where PP is arbitrary) and study the stability of synchronized state. We show that there exists a critical lattice size beyond which the synchronized state is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis is also extended to 2-dimensional PP-neighbor diffusively coupled map lattices.Comment: 4 pages, 2 figure

    Secure Digital Signal Transmission by Multistep Parameter Modulation and Alternative Driving of Transmitter Variables

    Full text link
    The idea of secure communication of digital signals via chaos synchronization has been plagued by the possibility of attractor reconstruction by eavesdroppers as pointed out by Perez and Cerdeira. In this Letter, we wish to present a very simple mechanism by which this problem can be overcome, wherein the signal is transmitted via a multistep parameter modulation combined with alternative driving of different transmitter variables, which makes the attractor reconstruction impossible. The method is illustrated by means of the Lorenz system and Chua's circuit as examples.Comment: 15 pages, RevTeX, 6 eps figures, To appear in Int. J. Bifurcation and Chaos (July 2001

    Estimation of System Parameters in Discrete Dynamical Systems from Time Series

    Get PDF
    We propose a simple method to estimate the parameters involved in discrete dynamical systems from time series. The method is based on the concept of controlling chaos by constant feedback. The major advantages of the method are that it needs a minimal number of time series data and is applicable to dynamical systems of any dimension. The method also works extremely well even in the presence of noise in the time series. The method is specifically illustrated by means of logistic and Henon maps.Comment: 4 page

    Estimation of System Parameters and Predicting the Flow Function from Time Series of Continuous Dynamical Systems

    Full text link
    We introduce a simple method to estimate the system parameters in continuous dynamical systems from the time series. In this method, we construct a modified system by introducing some constants (controlling constants) into the given (original) system. Then the system parameters and the controlling constants are determined by solving a set of nonlinear simultaneous algebraic equations obtained from the relation connecting original and modified systems. Finally, the method is extended to find the form of the evolution equation of the system itself. The major advantage of the method is that it needs only a minimal number of time series data and is applicable to dynamical systems of any dimension. The method also works extremely well even in the presence of noise in the time series. This method is illustrated for the case of Lorenz system.Comment: 12 pages, 4 figure

    Desynchronized wave patterns in synchronized chaotic regions of coupled map lattices

    Get PDF
    We analyze the size limits of coupled map lattices with diffusive coupling at the crossover of low-dimensional to high-dimensional chaos. We investigate the existence of standing-wave-type periodic patterns, within the low-dimensional limit, in addition to the stable synchronous chaotic states depending upon the initial conditions. Further, we bring out a controlling mechanism to explain the emergence of standing-wave patterns in the coupled map lattices. Finally, we give an analytic expression in terms of the unstable periodic orbits of the isolated map to represent the standing-wave patterns

    Gene Expression, Function and Ischemia Tolerance in Male and Female Rat Hearts After Sub-Toxic Levels of Angiotensin II

    Get PDF
    To examine the response to chronic high-dose angiotensin II (Ang II) and a proposed milder response in female hearts with respect to gene expression and ischemic injury. Female and male litter–matched rats were treated with 400 ng kg−1 min−1 Ang II for 14 days. Hearts were isolated, subjected to 30-min ischemia and 30-min reperfusion in combination with functional monitoring and thereafter harvested for gene expression, WB and histology. Ang II-treated hearts showed signs of non-hypertrophic remodeling and had significantly higher end diastolic pressure after reperfusion, but no significant gender difference was detected. Ang II increased expression of genes related to heart function (ANF, β-MCH, Ankrd-1, PKC-α, PKC-δ TNF-α); fibrosis (Col I-α1, Col III-α1, Fn-1, Timp1) and apoptosis (P53, Casp-3) without changing heart weight but with 68% increase in collagen content. High (sub-toxic) dose of Ang II resulted in marked heart remodeling and diastolic dysfunction after ischemia without significant myocyte hypertrophy or ventricular chamber dilatation. Although there were some gender-dependent differences in gene expression, female gender did not protect against the overall response

    Involvement of mast cells in monocrotaline-induced pulmonary hypertension in rats

    Get PDF
    Background: Mast cells (MCs) are implicated in inflammation and tissue remodeling. Accumulation of lung MCs is described in pulmonary hypertension (PH); however, whether MC degranulation and c-kit, a tyrosine kinase receptor critically involved in MC biology, contribute to the pathogenesis and progression of PH has not been fully explored.Methods: Pulmonary MCs of idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline-injected rats (MCT-rats) were examined by histochemistry and morphometry. Effects of the specific c-kit inhibitor PLX and MC stabilizer cromolyn sodium salt (CSS) were investigated in MCT-rats both by the preventive and therapeutic approaches. Hemodynamic and right ventricular hypertrophy measurements, pulmonary vascular morphometry and analysis of pulmonary MC localization/counts/activation were performed in animal model studies.Results: There was a prevalence of pulmonary MCs in IPAH patients and MCT-rats as compared to the donors and healthy rats, respectively. Notably, the perivascular MCs were increased and a majority of them were degranulated in lungs of IPAH patients and MCT-rats (p < 0.05 versus donor and control, respectively). In MCT-rats, the pharmacological inhibitions of MC degranulation and c-kit with CSS and PLX, respectively by a preventive approach (treatment from day 1 to 21 of MCT-injection) significantly attenuated right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH). Moreover, vascular remodeling, as evident from the significantly decreased muscularization and medial wall thickness of distal pulmonary vessels, was improved. However, treatments with CSS and PLX by a therapeutic approach (from day 21 to 35 of MCT-injection) neither improved hemodynamics and RVH nor vascular remodeling.Conclusions: The accumulation and activation of perivascular MCs in the lungs are the histopathological features present in clinical (IPAH patients) and experimental (MCT-rats) PH. Moreover, the accumulation and activation of MCs in the lungs contribute to the development of PH in MCT-rats. Our findings reveal an important pathophysiological insight into the role of MCs in the pathogenesis of PH in MCT- rats

    Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes

    Get PDF
    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the “International Year of pulses”. Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes

    Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection

    Get PDF
    Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections
    corecore