880 research outputs found

    Коллективизация и азербайджанское село

    Get PDF
    This chapter argues that there are contrary views regarding the mathematical needs of employees in workplaces, and this results in confusion around debate on the issue. The problem has been exacerbated by the ubiquity of information technologies and the widespread automation of routine procedures, which have resulted in little if any trace of the mathematical processes going on. Following a short survey of research in the field, we summarize recent research that has identified a particular difficulty in terms of widespread pseudo-mathematical interpretation of symbolic output in workplaces. Such interpretations are shown to impede communication, but can be challenged by developing relevant techno-mathematical literacies among employees. Effective strategies for developing techno-mathematical literacies relevant to specific work sectors are described

    Development of a Sandwich ELISA to Measure Exposure to Occupational Cow Hair Allergens

    Get PDF
    Background: Cow hair and dander are important inducers of occupational allergies in cattle-exposed farmers. To estimate allergen exposure in farming environments, a sensitive enzyme immunoassay was developed to measure cow hair allergens. Methods: A sandwich ELISA was developed using polyclonal rabbit antibodies against a mixture of hair extracts from different cattle breeds. To assess the specificity of the assay, extracts from other mammalian epithelia, mites, molds and grains were tested. To validate the new assay, cow hair allergens were measured in passive airborne dust samples from the stables and homes of farmers. Dust was collected with electrostatic dust fall collectors (EDCs). Results: The sandwich ELISA was found to be very sensitive (detection limit: 0.1 ng/ml) and highly reproducible, demonstrating intra-and interassay coefficients of variation of 4 and 10%, respectively. The assay showed no reactivity with mites, molds and grains, but some cross-reactivity with other mammalian epithelia, with the strongest reaction with goat. Using EDCs for dust sampling, high concentrations of bovine allergens were measured in cow stables (4,760-559,400 mu g/m(2)). In addition, bovine allergens were detected in all areas of cattle farmer dwellings. A large variation was found between individual samples (0.3-900 mu g/m(2)) and significantly higher values were discovered in changing rooms. Conclusion: The ELISA developed for the detection of cow hair proteins is a useful tool for allergen quantification in occupational and home environments. Based on its low detection limit, this test is sensitive enough to detect allergens in passive airborne dust. Copyright (C) 2011 S. Karger AG, Base

    Techno-mathematical literacies in the workplace: a critical skills gap

    Get PDF
    There has been a radical shift in the mathematical skills required in modern workplaces. With the ubiquity of IT, employees now require Techno-mathematical Literacies, the mastery of new kinds of mathematical knowledge shaped by the systems that govern their work. The education system does not fully recognise these skills, employees often lack them, and companies struggle to improve them. This project has developed prototype learning resources to train a variety of employees in the mathematical awareness and knowledge that today?s employment require

    Beyond jam sandwiches and cups of tea: An exploration of primary pupils' algorithm‐evaluation strategies

    Get PDF
    The long-standing debate into the potential benefit of developing mathematical thinking skills through learning to program has been reignited with the widespread introduction of programming in schools across many countries, including England where it is a statutory requirement for all pupils to be taught programming from five years old. Algorithm is introduced early in the English computing curriculum, yet, there is limited knowledge of how young pupils view this concept. This paper explores pupils’ (aged 10-11) understandings of algorithm following their engagement with one year of ScratchMaths (SM), a curriculum designed to develop computational and mathematical thinking skills through learning to program. 181 pupils from six schools undertook a set of written tasks to assess their interpretations and evaluations of different algorithms that solve the same problem, with a subset of these pupils subsequently interviewed to probe their understandings in greater depth. We discuss the different approaches identified, the evaluation criteria they used and the aspects of the concept that pupils found intuitive or challenging, such as simplification and abstraction. The paper ends with some reflections on the implications of the research, concluding with a set of recommendations for pedagogy in developing primary pupils’ algorithmic thinking

    Making Constructionism Work at Scale: The Story Of Scratchmaths

    Get PDF

    Integrating Technology for Deep Mathematics Learning

    Get PDF
    Technology can help to build conceptual understanding through “dynamic representations”, that is visual models of mathematics concepts. This approach has a strong research basis, with ample evidence of efficacy. But technology is not enough. Some teachers can take the raw technology for dynamic representations and fashion an appropriate sequence of lessons, but most teachers benefit from guidance in using these capabilities to develop student reasoning across a series of lessons

    An assessment of the precision and confidence of aquatic eddy correlation measurements

    Get PDF
    The quantification of benthic fluxes with the aquatic eddy correlation (EC) technique is based on simultaneous measurement of the current velocity and a targeted bottom water parameter (e. g., O-2, temperature). High-frequency measurements (64Hz) are performed at a single point above the seafloor using an acoustic Doppler velocimeter (ADV) and a fast-responding sensor. The advantages of aquatic EC technique are that 1) it is noninvasive, 2) it integrates fluxes over a large area, and 3) it accounts for in situ hydrodynamics. The aquatic EC has gained acceptance as a powerful technique; however, an accurate assessment of the errors introduced by the spatial alignment of velocity and water constituent measurements and by their different response times is still needed. Here, this paper discusses uncertainties and biases in the data treatment based on oxygen EC flux measurements in a large-scale flume facility with well-constrained hydrodynamics. These observations are used to review data processing procedures and to recommend improved deployment methods, thus improving the precision, reliability, and confidence of EC measurements. Specifically, this study demonstrates that 1) the alignment of the time series based on maximum cross correlation improved the precision of EC flux estimations; 2) an oxygen sensor with a response time of <0.4 s facilitates accurate EC fluxes estimates in turbulence regimes corresponding to horizontal velocities <11 cm s(-1); and 3) the smallest possible distance (<1 cm) between the oxygen sensor and the ADV's sampling volume is important for accurate EC flux estimates, especially when the flow direction is perpendicular to the sensor's orientation

    Designing for learning mathematics through programming: A case study of pupils engaging with place value

    Get PDF
    This paper focuses on a major part of a two-year intervention, ScratchMaths (SM), which seeks to exploit programming for the learning of mathematics. The SM hypothesis is that given the right design of curriculum, pedagogy and digital tools, pupils can engage with and express important mathematical ideas through computer programming. We describe the overall design of SM and as an illustration of the approach, we elaborate a more detailed description of the specific SM activities that seek to harness the programming concept of ‘objects communicating with one another’ for the exploration of the mathematical concept of place value through a syntonic approach to learning. We report a case study of how these activities were implemented in two primary classes. Our findings constitute a kind of existence theorem: that with carefully designed and sequenced learning activities and appropriate teacher support, this approach can allow pupils to engage with difficult mathematical ideas in new, meaningful and generalisable ways. We also point to the challenges which emerged through this process in ensuring pupils encounter these mathematical ideas

    Students’ Evolving Meaning About Tangent Line with the Mediation of a Dynamic Geometry Environment and an Instructional Example Space

    Get PDF
    In this paper I report a lengthy episode from a teaching experiment in which fifteen Year 12 Greek students negotiated their definitions of tangent line to a function graph. The experiment was designed for the purpose of introducing students to the notion of derivative and to the general case of tangent to a function graph. Its design was based on previous research results on students’ perspectives on tangency, especially in their transition from Geometry to Analysis. In this experiment an instructional example space of functions was used in an electronic environment utilising Dynamic Geometry software with Function Grapher tools. Following the Vygotskian approach according to which students’ knowledge develops in specific social and cultural contexts, students’ construction of the meaning of tangent line was observed in the classroom throughout the experiment. The analysis of the classroom data collected during the experiment focused on the evolution of students’ personal meanings about tangent line of function graph in relation to: the electronic environment; the pre-prepared as well as spontaneous examples; students’ engagement in classroom discussion; and, the role of researcher as a teacher. The analysis indicated that the evolution of students’ meanings towards a more sophisticated understanding of tangency was not linear. Also it was interrelated with the evolution of the meaning they had about the inscriptions in the electronic environment; the instructional example space; the classroom discussion; and, the role of the teacher
    corecore