
BEYOND JAM SANDWICHES AND CUPS OF TEA

Beyond Jam Sandwiches and Cups of Tea: An Exploration of Primary Pupils’ Algorithm -

Evaluation Strategies

Laura Benton (l.benton@ucl.ac.uk)*, Ivan Kalas (i.kalas@ucl.ac.uk; kalas@fmph.uniba.sk)^,

Piers Saunders (piers.saunders@ucl.ac.uk)*, Celia Hoyles (c.hoyles@ucl.ac.uk)* and Richard

Noss (r.noss@ucl.ac.uk)*

*UCL Knowledge Lab, UCL Institute of Education, University College London, 23-29 Emerald

Street, London WC1N 3QS, UK

^Department of Informatics Education, Comenius University, Bratislava, Slovakia

Acknowledgements

We thank the Education Endowment Foundation for funding this work. We all thank our

SM colleagues Dave Pratt and Johanna Carvajal for their invaluable contributions to the

intervention design. Finally we are extremely grateful to the teachers and pupils at all of the SM

project schools for their continued engagement, hard work and enthusiasm in trialing our

intervention, and for sharing some of their experiences with us.

BEYOND JAM SANDWICHES AND CUPS OF TEA

Abstract

The long-standing debate into the potential benefit of developing mathematical thinking

skills through learning to program has been reignited with the widespread introduction of

programming in schools across many countries, including England where it is a statutory

requirement for all pupils to be taught programming from five years old. Algorithm is introduced

early in the English computing curriculum, yet, there is limited knowledge of how young pupils

view this concept. This paper explores pupils’ (aged 10-11) understandings of algorithm

following their engagement with one year of ScratchMaths (SM), a curriculum designed to

develop computational and mathematical thinking skills through learning to program. 181 pupils

from six schools undertook a set of written tasks to assess their interpretations and evaluations of

different algorithms that solve the same problem, with a subset of these pupils subsequently

interviewed to probe their understandings in greater depth. We discuss the different approaches

identified, the evaluation criteria they used and the aspects of the concept that pupils found

intuitive or challenging, such as simplification and abstraction. The paper ends with some

reflections on the implications of the research, concluding with a set of recommendations for

pedagogy in developing primary pupils’ algorithmic thinking.

Keywords

Children’s programming; computing education; mathematics; algorithm; Scratch

BEYOND JAM SANDWICHES AND CUPS OF TEA

Introduction

The potential benefit of developing mathematical thinking skills through learning to

program has been the subject of debate for several decades (Du Boulay, 1980; Hoyles & Noss,

1987a, 1987b; Noss, 1987b). In recent years this debate has been reignited due to widespread

changes in computing/informatics within the school systems of many different countries with an

increased emphasis on learning to program from an early age (Bocconi, Chioccariello, Dettori,

Ferrari, & Engelhardt, 2016; Gujberova & Kalas, 2013; Kabatova, Kalas, & Tomcsanyiova,

2016; Passey, 2016). Researchers have struggled to agree whether programming benefits

mathematical understanding or not, due in part to the crucial role of teachers. However, there is

evidence that programming can benefit the learning of specific areas of mathematics such as

algebra (Noss, 1986), geometry (Noss, 1987a), ratio and proportion (Clements & Sarama, 1997)

as well as more general conceptual and affective issues such as self-confidence and mathematical

discussion (Howe & O'Shea, 1978). Clements (1999) has also noted that mathematics learning is

most successful in studies which “involve carefully planned sequences of computer

programming activities”. Clements (1999) suggests that exposing pupils to computer

programming is not enough and there is a need for a curriculum explicitly designed to exploit the

connections between programming and mathematics.

From September 2014, all primary schools in England have been required to teach the

national computing curriculum, which includes designing and building programs. There are

challenges in implementation with limited guidance on how to teach the proposed content, the

specific levels of knowledge or understanding pupils should achieve at each stage of the

curriculum and issues pupils are likely to encounter and how these should be addressed (Passey

2016). Further challenges concern how to fit the new curriculum content into an already busy

BEYOND JAM SANDWICHES AND CUPS OF TEA

timetable, and crucially how to forge cross-curricular links from computing to other curriculum

areas.

The ScratchMaths (SM) projects aims to address some of these challenges by providing a

comprehensive curriculum for Year 5 and 6 pupils (aged 9-11) that maps directly to the

computing curriculum, seeks to develop pupils’ programming skills as well as exploit these skills

to explore key mathematical concepts with explicit links to the mathematics curriculum.

Algorithm underpins the English primary computing curriculum, with pupils expected to

“apply” this concept throughout their computing lessons. Algorithm can also be found under

another guise within mathematics where parallels can be drawn with procedural and logical

reasoning. Here pupils are expected to follow through a logical argument, which in mathematics

is shaped by the representations used to express reasons and by classroom conventions (see for

example the discussion of ‘proofs’ that show that the sum of two odd numbers is always even in

(Healy & Hoyles, 2000)). The SM curriculum has thus been built so that algorithm, as

instantiated in a computer program, serves as an overarching means to forge connections

between the two curricula. Given its centrality, we have researched pupils’ understandings of

algorithm, and specifically probed pupils’ strategies for evaluating the differences between

algorithms that solve the same problem, and the criteria they privilege in their judgements: what

aspects of the concept do they find intuitive or challenging and what are the implications for

teaching.

Background

Defining Algorithm within Computing and Mathematics

Algorithm, both the word and the concept, has a long history and is a foundational

concept within computer science (CS). It has been suggested that “the concept of algorithm

BEYOND JAM SANDWICHES AND CUPS OF TEA

should be considered to be the first axiom of computer science” (Serafini, 2011) and an ability to

think algorithmically is a crucial prerequisite of computer programming (Futschek & Moschitz,

2010). Despite being formalised in the 20th century by mathematicians and computer scientists

such as Hilbert, Gödel, Church, Post, Turing and others, in formal CS, at present, the concept of

algorithm is rarely rigorously defined (Moschovakis, 2001).

In CS, functions for which an effective method to calculate their values exist are called

algorithms. They must consist of a finite number of exact instructions, terminate after a finite

number of steps when applied to an input, and produce a correct answer when instructions are

followed correctly. More informal definitions of algorithm are widespread in various computing

education contexts, but usually focus on the ‘exact instructions’, ‘finite computation’, and

‘correct answer’ aspects of algorithm, and on the computational constructs needed to describe or

represent algorithms. For instance Misfeldt and Ejsing-Dunn (2015) refer to “systematic

descriptions of problem-solving and construction strategies, cause-effect relationships, and

events”. In contrast, Dwyer et al. (2014) focus on the sequence of steps chosen to solve a

problem efficiently. Furthermore within her much cited definition of computational thinking

Wing (2011) refers to algorithm as “an abstraction of a process that takes inputs, executes a

sequence of steps, and produces outputs to satisfy a desired goal”. The highly theoretical concept

of algorithmic solvability is simplified in primary and secondary education to ensuring students

have an awareness that one problem-solving strategy may solve a subset of (seemingly

unrelated) problems and that a subset of problems may have no solution1.

1 In his On the Calculation with Hindu Numerals (written about 820 and translated later into Latin as Algoritmi de numero

Indorum), a Persian mathematician Al-Khwarizmi presented useful problem-solving methods with applications to a wide
set of problems: hence the concept is named after him. Although we do not pursue this further here, the concept of
algorithm – as illustrated earlier – constitutes an important touching point between mathematics and computer science.

BEYOND JAM SANDWICHES AND CUPS OF TEA

Ideas for the teaching of algorithm have been proposed, usually based on expert

knowledge and experience. For example, Futschek and Moschitz (2011) specify several

fundamental concepts which should be addressed during primary school children’s initial

learning about algorithm: including basic commands, their sequence, alternatives (if), iterations

(loop) and abstraction (method2). They also suggest several stages of learning in algorithmic

thinking: interpret, step through and predict the outcome of a given algorithm (understanding);

generate own algorithm to achieve a desired result (design); and adapt an algorithm for solving a

specific problem to more general problems (generalization/simplification). We have endeavoured

to instantiate these ideas as part of the pedagogical approach in the SM curriculum (see next

section) and through the empirical research reported here we intend to test some of the

assumptions in this approach from the pupil perspective.

From a young age pupils in England encounter the idea of algorithm, with the Key Stage

1 (aged 5-7 years) computing curriculum expecting pupils to create their own simple algorithms

and debug them, as well as to employ logical thinking to step through an algorithm and predict

the outcome. Considering the complexities of algorithm highlighted above it is somewhat

surprising that the concept is introduced so early and this raises concerns about the potential for

trivialization in the interests of making it accessible to this age group.

As pupils move into Key Stage 2 they are expected to build on the knowledge of

algorithms developed earlier, particularly in the design of programs where they are required to

understand and use sequence, selection and repetition, influencing the order in which the steps of

an algorithm would be run. A further objective related to the concept of algorithm is: “Use

logical thinking to explain how some simple algorithms work and to detect and correct errors in

2 Known as definition in some programming environments such as Scratch (introduced later)

BEYOND JAM SANDWICHES AND CUPS OF TEA

algorithms and programs”3. Thus pupils would be expected to be able to explain their own

algorithms as well as interpret and predict the result of someone else’s algorithm. It is hoped that

with an increased focus on the development of logical and algorithmic thinking skills pupils

would move from debugging code through a trial and error approach to following a planned

logical process.

Many pupils experience difficulties in the understanding of algorithms (e.g. Tsalapatas,

Heidmann, Alimisi, & Houstis, 2012), which is unsurprising considering the variation in simply

defining the term as well as the complexity of the concept. However, despite the importance of

algorithm in CS there is limited research into the nature of these specific difficulties, what

features help young pupils to interpret algorithms and the criteria they use for evaluating similar

algorithms. To understand the meanings that pupils themselves bring to programming one

important dimension is how they evaluate their own work and the work of others as well as the

role the teacher can play within this process. These issues form the core of our research.

Algorithm within the ScratchMaths Project

Following engagement in the SM curriculum this paper seeks to go beyond pupils’

definition, understanding and implementation of algorithms to consider how they evaluate

similar algorithmic solutions. We aim to uncover the characteristics pupils prioritise, what they

find intuitive and/or challenging and how teaching practices might be adapted to better support

the learning of this concept.

3 For full programme of study see:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239033/PRIMARY_national_curricul
um_-_Computing.pdf

BEYOND JAM SANDWICHES AND CUPS OF TEA

Project Background

The overarching aim of the SM project is to investigate how learning to program can be

exploited as a conceptual framework for mathematical reasoning among pupils aged 9-11 years.

The project has involved the development of a 2-year intervention, which addresses key aspects

of the primary computing and mathematics curriculums in upper Key Stage 2. The intervention

comprises six modules (three per year) and was designed by researchers working closely with

four ‘design’ schools to iteratively test and refine the curriculum resources. One goal of the

curriculum design was to ensure accessibility across a wide cross-section of pupils at different

attainment levels, and to particularly address the needs of those pupils who struggle with

conventional mathematics.

This intervention has recently undergone an independent evaluation, funded by the

Education Endowment Foundation (EEF), in around 50 schools across England, with the results

due to be published in summer 20184.

The Role of Scratch

Scratch5 is a programming environment freely available online and widely used both in

and out of schools. Scratch is a visual blocks-based language that allows children to build scripts

(programs) through snapping together different coloured blocks (commands), thus circumventing

to a large extent the syntax errors which caused issues in many earlier programming languages

for children such as Logo (Resnick et al., 2009). Conceptual challenges are of course still evident

4 The final evaluation report will be made available here: https://educationendowmentfoundation.org.uk/our-

work/projects/scratch-programming
5 http://scratch.mit.edu

https://educationendowmentfoundation.org.uk/our-work/projects/scratch-programming
https://educationendowmentfoundation.org.uk/our-work/projects/scratch-programming

BEYOND JAM SANDWICHES AND CUPS OF TEA

and in the absence of syntax issues, debugging can mainly focus on the algorithmic level

(Foerster, 2016).6

The overall pedagogic approach in the SM project comprises five unordered constructs -

Explore, Explain, Exchange, Envisage and bridgE (the “5Es”), which have structured the whole

classroom approach to the different activities in the SM curriculum (see Anonymised, 2017a).

The approach was also shaped by constructionism, that is to seek to foster learning as building

knowledge structures by learners actively engaging together in “constructing a public entity”

(Papert, 1980). These entities could be constructs such as “beautiful patterns, interactive art, or

computer games” (Misfeldt & Ejsing-Dunn, 2015). Papert suggests that the role of the teacher is

to make connections between the children’s work and powerful mathematical ideas (Papert,

2000). He also proposes the idea of “playing turtle” in which the programmer acts as the

programmable object (Papert, 1980, 1987) and represents the notion that “learning to program

can benefit from attempting both to act as the creator of algorithms and as the performer”

(Misfeldt & Ejsing-Dunn, 2015).

Introducing Algorithm within the SM Curriculum

In line with our constructionist approach, the algorithms that pupils explore in SM are not

trivial, not known in advance, meaningful to consider and compare to alternative strategies of

solution, worth re-applying in other (and sometimes unexpected) contexts and useful to

generalise to broader set of tasks. In contrast typical introductory examples used in English

schools tend to be around describing everyday or school activities (e.g. making a jam sandwich

or a cup of tea, or steps in multiplying two numbers), which illustrate only limited characteristics

6 The absence of error messages in Scratch is an issue in terms of debugging algorithms as the pupils receive no feedback,

but just know that ‘something is not working’

BEYOND JAM SANDWICHES AND CUPS OF TEA

of an algorithm: namely (and only partly) the importance of the order of steps, and sometimes

the need for precise language.

In SM, the concept of algorithm is equivalent to a set of formal and precise strategies

represented in Scratch scripts. It is introduced from the first module through activities designed

around building scripts for two different pattern-stamping strategies. The first algorithm creates

circular tile patterns by the sprite (a programmable object) moving around the outside of the

pattern and repeating the steps move – turn – stamp, while the second one creates a pattern by the

sprite moving from the centre of the pattern and repeating the steps move – stamp – move

backwards – turn (see Figure 1).

[Insert Figure 1 here]

 Both strategies are revisited in different contexts: in drawing regular polygons and

circular patterns of dots and dashes and then in constructing unexpectedly complex tile patterns.

The strength of the algorithms lies in the fact they can be repeated with different tiles7, repeated

several times with multiple tiles, or generalised by replacing basic stamping by a user-defined

command. They are also both ‘state-transparent’ so can be used in a straightforward way in more

complex patterns. The first algorithm is simpler with fewer blocks but the second algorithm with

the addition of one step provides a strategy that is easier to generalize to other patterns and to

extend to build more complex patterns (see Figure 2). In the second algorithm pupils are also

required to use inverse operations connecting to the important mathematical idea of ‘doing and

undoing’.

7 Referred to as ‘costumes’ in Scratch, which are different visual representations of the sprite

BEYOND JAM SANDWICHES AND CUPS OF TEA

[Insert Figure 2 here]

Our goal was to encourage pupils to understand that algorithm was an exact expression of

a ‘strategy’. In introductory ‘unplugged’ activities, we use verbal language and body syntonicity

(Watt, 1998) to formulate an algorithm and then move to Scratch itself to formulate it more

precisely. For example, pupils are encouraged to stand up and physically enact each step of the

algorithm with their bodies as the teacher verbally gives the commands, e.g. ‘move forward 1

step’ ‘turn 45 degrees’ ‘stamp (foot)’. Viewing this approach through the lens of

constructionism, we are exploiting Papert’s idea of an ‘object to think with’, with the Scratch

scripts becoming the objects with which to think about algorithms; and employing Papert’s idea

of “playing turtle”8: encouraging pupils to imagine themselves as the sprite walking through

each step in order to understand the algorithm. There are clear links here with articulating steps

in a logical chain of reasoning required to solve a particular problem in mathematics.

Methods

We designed a structured paper-based task that was adapted from activities the pupils had

already experienced during their SM lessons. The task was intended to tease out algorithmic

features that pupils found easy or challenging to interpret, features they gave precedence to as

well as their approach to the generalising algorithms.

8 We have brought this back as “playing Beetle” because the programmable object used within parts of the SM curriculum

is a Beetle instead of the Logo turtle

BEYOND JAM SANDWICHES AND CUPS OF TEA

All pupils had previously engaged with a year of SM lessons, completing at least the core

activities from the first three modules of the curriculum9 which introduced pupils to algorithm

along with computational concepts such as sequencing, repetition, debugging, abstraction,

logical reasoning, events, expressions and parallel behaviours. Pupils explored these concepts

through activities which focused on repeating patterns, geometrical drawing and interactive

behaviours. Throughout these three modules, pupils ‘used’ and engaged with mathematical ideas

including symmetry, angles, negative numbers, regular polygons, coordinates, multiplication and

factors.

Participants

Two researchers visited a diverse subset of the schools (six in total) involved in the SM

project to administer the task. 181 Year 6 pupils (aged 10-11) completed the task, with 59 pupils

interviewed (mostly in pairs) after the task to explain their answers in more detail. Table 1

provides an overview of the pupils that participated in the task and subsequent interviews. All

pupils were taught in mixed-ability classes.

[Insert Table 1 here]

Design of the Task

The pupil task was informed by an earlier version that had been piloted with teachers

within the SM PD sessions. Pupils were given approximately 15 minutes to complete the task.

9 see https://www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials for the full SM curriculum which

is free to download. In the materials we identify core activities and extra activities as extensions.

https://www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials

BEYOND JAM SANDWICHES AND CUPS OF TEA

Questions 1-3 explored the curriculum objective that pupils should “understand what

algorithms are”, but we were deliberate in not referencing this in terms of a computer. The

questions included:

1. What is an algorithm?

2. Give an example of an algorithm.

3. How would you explain what an algorithm is to a younger pupil?

Questions 4-7 explored pupils’ evaluations of algorithms (that solved the same problem)

in terms of their perceived (i) difficulty, (ii) readability, (iii) teacher expectation/assessment and

(iv) ease of reuse. Five scripts (see Table 2) - each drawing a simple cross (that pupils had

previously drawn for themselves in SM) - were chosen for this study as they used different

algorithms, had various start and end positions for the Beetle sprite and a range of control

structures and ‘levels’ of abstraction (i.e. incorporated definitions).

Questions 4-6 probed pupils’ judgments of these scripts in terms of how ‘easy’ and ‘easy

to read’ they were as well as how they thought their teacher would assess the script10:

4. Order the scripts from easiest to hardest. Explain your answer.

5. Which script do you find easiest to read? Explain your answer.

6. Which script would your teacher give the best mark to? Explain your answer.

Lastly Question 7 asked which of the five scripts they would use to draw a fence (as in

Table 3) and why, as well as to describe what would the script look like.

[Insert Table 2 here]

10 a methodology based on that used by Healy and Hoyles (2000) to probe students views of proofs: that is collect a

sample of pupil responses, then categorise them

BEYOND JAM SANDWICHES AND CUPS OF TEA

[Insert Table 3 here]

Data Analyses

Pupil responses were independently coded by two researchers. For Q1-3 (explaining what

an algorithm is and giving an example) the researchers agreed an initial coding scheme:

 a basic definition of an algorithm (using words such as a program, script, set or

sequence of instructions, code);

 an advanced definition of an algorithm (referencing concepts such as multiple

strategies to solve the same problem or generalizability);

 categories for the types of examples expected including correct examples in

Scratch or ‘Scratch-like’ scripts, other code (e.g. JavaScript), non-code (e.g. a

recipe) and incorrect examples (this included answers which consisted of a single

command/instruction i.e. not a sequence).

The inter-rater reliability was calculated using Cohen’s Kappa. Firstly the coding of the

definitions as basic, advanced or incorrect resulted in an inter-rater reliability of κ=0.98 (very

good agreement). Secondly the coding of the algorithm examples as Scratch script, other code,

non-code or incorrect resulted in an inter-rater reliability of κ=0.82 (very good agreement). Any

discrepancies were then discussed and subsequently resolved by the coders.

For Q4-7, the interview responses were transcribed and transferred to nVivo. An initial

coding in nVivo was undertaken by one of the researchers firstly by identifying the script

referred to (i.e. A-E) and secondly by establishing the justification of the classification (i.e. why

the script was Easy, Difficult, Easy to Read, would get the Best Mark or could be used to draw

the Fence). Next these responses were grouped into high level themes, which were created as

BEYOND JAM SANDWICHES AND CUPS OF TEA

nodes in nVivo and the interview responses were coded according to these high-level themes,

which included: Number of scripts; Choice of blocks; Number of blocks; Use of definitions;

Input numbers; Position of sprite; Implementation approach; Demonstrates skills or knowledge.

The themes were then further divided into sub-themes, which were used to organise pupil

justifications for their choice of script in relation to each question.

Results

How Pupils Defined Algorithm

We begin by examining pupils’ understandings of the term ‘algorithm’ (Q1-3). Although

all teachers had introduced the term in their SM teaching (during Module 1), many had not

subsequently referenced or returned to it within later lessons. This potentially explains why many

pupils could not remember or did not know what an algorithm was, as well as the low numbers

of pupils attempting these questions (46/181).

Table 4 shows the number of pupils that attempted to answer this question and that were

able to provide a basic or advanced definition. Many pupils described algorithm as a “set of

instructions”, but pupils also referred to the idea of it being a “step by step” sequence,

represented by a “code” or “script” and used to tell a computer what to do. A few pupils went

further indicating the possibility of having multiple solutions (“when you can do multiple

different ways to solve it”) and generalising to different contexts (“starting with any type of code

and experience the use of different types of blocks and connect them”).

Table 4 also provides an overview of the different types of examples pupils chose as an

illustration of an algorithm. The majority of pupils used Scratch scripts as examples, but some

pupils used examples from Minecraft, HTML and Code Studio as well as more general

instructions such as “go straight, turn left, go up”. Most incorrect examples were where pupils

BEYOND JAM SANDWICHES AND CUPS OF TEA

only gave a single command as the example, but there were also examples in the form of a

pattern and a description of the instructional language used in an algorithm “(modal verbs) [e.g.]

must, put, now, should, will (a command)”.

[Insert Table 4 here]

Comparing Similar Algorithms

In the second part of the task (Q4-6), pupils were asked to evaluate the Scratch scripts

against various constructs. In this case Scratch is the language for expressing the algorithms and

the pupils are asked to comment on the different strategies employed to achieve the same

solution.

Table 5 shows that similar majorities of pupils selected either Script A or Script E as the

easiest (from Table 2). The key difference between these scripts was the inclusion of the Arm

definition, generalising the move forward and move backwards steps into a new block (although

the steps that the sprite follows are the same). However, there were some differences between

schools with over 60% of pupils in School C and D choosing Script E and 59% of pupils in

School B and 80% in School A choosing Script A.

[Insert Table 5 here]

In all schools a clear majority of pupils (70%+) selected Script C as the hardest. There

was a similar split between Script A and Script E in terms of ease of reading, with the majority

of pupils in each school giving the same script as both the easiest and easiest to read, although

BEYOND JAM SANDWICHES AND CUPS OF TEA

overall the number saying Script E increased for ease of reading. The majority of pupils in four

schools (schools C-F) thought that their teacher would give the best mark to Script C, however

in schools A and B more pupils (50% and 45%) thought their teacher would award the best mark

to Script A.

Lastly, in Q7, when asked which script would be most effective in helping them draw a

row of 4 crosses (a fence) the majority of pupils thought that Script C would be most helpful.

Below we describe pupils’ reasoning for these choices.

What Makes an Algorithm Easy or Difficult?

The majority of pupils who were interviewed selected either Script A or E as the easiest

script (which was representative of the wider results), with pupils generally saying that the fact

these scripts had the smallest number of blocks made them easier (see Table 6). Pupils

explained that having fewer blocks made it easier to build, to understand and modify as well as

more efficient.

Similarly Table 6 also highlights that having a large number of blocks was the reason

that the majority of pupils chose Script C as the most difficult. Pupils also talked about the

choice of blocks within the script as being a factor including having a higher diversity of blocks

which could add to the difficulty of building the script in addition to understanding.

Furthermore, pupils found the choice of the blocks increased the difficulty because they

were complicated or unfamiliar, which included the point in direction and pen up/pen down

blocks as well as the go to x… y… block, with a few pupils finding this complicated because it

used coordinates.

Of those pupils who selected Script A as the easiest, many stated that it was because of

the use of a definition. They explained this helped to shorten the script as well as made it easier

BEYOND JAM SANDWICHES AND CUPS OF TEA

to read and quicker to build. A few pupils also referred to the reusability of the defined block

increasing the simplicity. Responses to the use of definitions were however mixed and did not

make it universally easier for all pupils, with some explaining they found Script E easier because

it did not have a defined block.

Pupils also raised the redundancy of some blocks as adding to the perceived difficulty,

particularly in relation to the use of an unnecessary defined block, which replaced a single block

in Script C.

A few pupils mentioned the inclusion of specific functionality in making scripts easier,

particularly the use of repeat, which helped in reducing the number of blocks within a script. A

small number of pupils also mentioned that the inclusion of familiar blocks, the sprite starting

and ending in the same position and the choice of turn angles all contributed to the ease of

understanding an algorithm.

[Insert Table 6 here]

Reading Algorithms

Pupils again chose Scripts A or E as easier to read, stating that shorter scripts made

reading a script easier (see Table 7).

Similarly, pupils were split on the use of definitions to support readability. For some

pupils having everything in a single script made it much easier for them to read. However, others

preferred to use definitions, with a few pupils stating that even though they thought Script E was

easier overall, including the definition actually made Script A easier for them to read.

BEYOND JAM SANDWICHES AND CUPS OF TEA

A few pupils discussed the choice of blocks impacting on the readability of a script. They

found it easier to read blocks with which they were familiar and had used before. They also

mentioned specific blocks like repeat helping.

Teacher Assessment

Table 7 shows that Script C was the most likely to be chosen as receiving the best mark

or seen as a greater achievement by the pupils’ teacher. However, a high proportion also selected

Script A to receive the best mark. The reason for this difference was reflected in the split opinion

between pupils about whether their teacher would prefer a longer script, demonstrating effort, or

a shorter script, demonstrating they had considered simplification. In relation to this some

pupils talked about their teacher encouraging them to use definitions in their scripts to make

them simpler and giving them credit for this.

Pupils also talked about the choice of blocks within Script C in terms of the script

complexity as well as the creativity and advanced understanding demonstrated in generating an

alternative solution, which would be rewarded with a good mark. One pupil discussed the

efficiency of the script, believing that Script E was the most efficient and therefore would

receive the best mark.

Extending Algorithms

In the final question, pupils were asked to consider which script they would use to draw a

fence (of crosses), intended to probe their understanding of extending an algorithm to use in

other contexts.

Table 7 highlights that many pupils found this question challenging and did not consider

the additional blocks they may need to add to create the fence. Some pupils could not answer or

seemed to select a script randomly (as during the interviews they were unable to provide a reason

BEYOND JAM SANDWICHES AND CUPS OF TEA

for their choice). It was also difficult for pupils to document, with some trying to draw out all of

the blocks that the script would contain (see Figure 3).

[Insert Figure 3 here]

However, of those pupils that were able to clearly justify their choice the majority

selected Script C because of the finishing position of the sprite (seen in the picture – Table 2),

which they explained made it easier to continue with drawing the next part of the fence.

There were a few pupils from four of the schools who considered this in a different way,

and would select one of three different scripts because they all started and finished in the same

position, requiring the least number of blocks to be added. However, they had not been able to

correctly specify the complete script for the fence (this may be in part explained by the time

constraints of the task).

This question requires an understanding of state transparency, which is implicitly touched

upon within SM through activities which involve drawing rows of different shapes, but it would

be at the teacher’s discretion as to whether they had made this explicit within their teaching

practice.

[Insert Table 7 here]

Discussion and Concluding Remarks

Firstly, we present an overview of pupil understandings of the term ‘algorithm’. Although

this is an explicit requirement of the national curriculum in England and is directly referenced in

BEYOND JAM SANDWICHES AND CUPS OF TEA

earlier SM activities it is clear that the use of the term has not been operationalised by several of

the teachers. Therefore, although many pupils may be able to apply the concept of algorithm they

struggle to explain what it is at any higher level of abstraction. Knowing the name of something

may or may not, of itself, lead to enhanced application of its meaning and role in the broader

picture.

It is hardly surprising that the pupils struggled to make sense of the concept of algorithm,

and introducing the term so early in the curriculum has the potential risk that pupils would form

a view – not entirely unknown in mathematics! – that remembering how to define the word

algorithm may be an end in itself. What does naming the making of a cup of tea add to the

process unless there is a rationale for so doing? Having a word to express a powerful idea can be

the key to unlock the idea in ways that are intellectually empowering if it can be used to build

other concepts. This is what we hoped would happen in mathematics – when scripts were used to

build mathematical ideas with the reasoning captured in the algorithm.

In addition, our findings have highlighted differences between the criteria pupils are

using to evaluate the algorithms against the various constructs; in some instances there is also a

clear difference between classes. Although all of the teachers were following the SM curriculum,

generally teaching the same activities in the same order, our findings suggest that some teachers

much more explicitly encouraged pupils to employ specific types of strategy that may reasonably

be expected to provide some rationale for learning what an algorithm is, how it may be used, and

what it ‘buys’ intellectually. An example of this is the practice employed by some teachers who

consistently encouraged the use of definitions to simplify scripts i.e. abstraction. In order even to

begin to understand the purpose behind this, pupils need to see the sequence of commands (the

‘body’ of the algorithm) as an entity; comparing algorithms necessitates seeing algorithm-as-

BEYOND JAM SANDWICHES AND CUPS OF TEA

object so that pupils can say things like ‘this algorithm is simpler than that’. This would, in

theory at least, allow pupils to make quite high-level remarks (implicitly, of course) that amount

to statements like “if (no.blocks-A > no.blocks-B) then B is simpler than A”.

In the interview responses, the focus by some pupils on the specific properties of the

scripts which included the level of familiarity (with the individual blocks), (sprite) position,

length and diversity (of blocks), suggested they were viewing the script as an ‘object’ in their

process of evaluating the algorithms. Pupils experienced challenges in relation to certain

representations of sprite position within the scripts e.g. through the direction of heading or

through the position on the coordinates grid: clearly the ‘unplugged’ experiences were probably

a key determinant of pupils’ attainment in this regard.

Within the SM curriculum a subset of activities focuses on the use of definitions within

scripts and there is opportunity to utilise them throughout. For some classes the use of definitions

have become a common practice to simplify scripts, reducing complexity such as nested repeats

(for more information about the use of definitions within the SM curriculum see (Anonymised,

2017b)). Our findings suggest that the use of definitions can potentially become an intuitive

practice for pupils but it requires initial facilitation and consistent encouragement from teachers

to maintain this practice and to allow pupils to exploit the power of definitions within their

algorithms. After such a process bridging to mathematical reasoning when instantiating

processes as objects would be a simple step. For example, a fundamental building block of

proving is to be able to reference early findings as objects of the proof.

An interesting finding concerned sometimes conflicting views of the need to reduce

redundancy and complexity versus the level of ‘perceived effort’ which had gone into the

construction of the different algorithms. This time, we look at the length-is-better criteria, with

BEYOND JAM SANDWICHES AND CUPS OF TEA

some pupils maintaining that longer script length and diversity of blocks represented more work

and that – irrespective of the readability of the completed scripts – teachers would be thought of

as appreciating longer scripts. Others recognized that there was a skill in being able to simplify

such a script and removing blocks did not reduce others’ perception of the effort/ability reflected

in the output. We maintain that this implies a need for teaching explicit focus on the length vs

elegance dichotomy to discuss in class the sort of sample scripts and the arguments presented

here.

Many pupils struggled with generalizing the algorithms within the last question (Q7)

related to drawing the fence. This task highlights a potential challenge in selecting from the pre-

existing algorithms the most appropriate strategy for a generalized situation. This is an extension

on the more typical activity to specify a generalized algorithm for yourself, but is equally

important as more advanced algorithmic thinking requires building on the work of others. We

know from the extensive work on Logo programming (Noss & Hoyles, 1996) that reuse of code

(typically in the form of sub-procedures) is not straightforward and takes time to become a

normal part of a problem-solving repertoire: for example, young children who are introduced to

the idea of how to construct a SQUARE procedure are reluctant to reuse the code to draw a line

of squares or a tower of squares, preferring instead to return to the single ‘line’ strategy which

essentially consists of a direct-drive solution surrounded by a definition. Explicitly engaging in

discussion about the power of abstraction seems to be an important pedagogy in computing but

also in bridging to mathematics.

In light of these findings below we set out a number of recommendations for primary

teaching pedagogy when introducing and extending the concept of algorithm:

BEYOND JAM SANDWICHES AND CUPS OF TEA

 Teachers – and through them the pupils – should understand algorithm as a

strategy to solve a problem, or even better – a set of problems. The concept of

algorithm should be addressed in contexts (situations) where there may be two or

more different strategies to apply

 The use of simplistic definitions of ‘algorithm’ should be avoided, with pupils

allowed to experience the key ideas for themselves before it is labelled

 The concept of algorithm as a strategy, a way to solve or to proceed should be

promoted

 Pupils should be encouraged in their understanding of ‘algorithm as object’

through unplugged activities

 Opportunities and explicit strategies for pupils to compare and evaluate similar

algorithms should be provided

 Pupils should be discouraged from thinking longer algorithms demonstrate

superior solutions or greater effort, and instead encouraged to focus on elegant

algorithms that are readable and easy to apply and reapply in different situations

 Strategies for simplifying algorithms (i.e. abstraction) should be provided

 Pupils should be helped to understand the power of abstraction through the

generalization of algorithms (for instance through the use of definitions within

Scratch).

To sum up, the results of this work show that it is feasible to design activities that

scaffold how particular algorithms might be generalized for reuse within other contexts. In so

doing, pupils are connecting with an overarching powerful idea, that of abstraction. It is this idea

more than any other, that confers intellectual power – the encapsulation of code in a definition

BEYOND JAM SANDWICHES AND CUPS OF TEA

being perhaps the most basic example of abstraction we have. Our findings highlight how

difficult it is for children to compare different approaches and how tackling this problem ‘from

above’ – i.e. as abstraction in the making – is not being universally translated into the pedagogy

of many teachers and something difficult to achieve through using more simplistic metaphors of

algorithm. Yet despite these pedagogical challenges many pupils were able to give some

significant and insightful answers which suggest they had started thinking about different

strategies, reflecting an early understanding of the concept of algorithm, with pupils not needing

any more exact or more formal understanding and/or definition.

It is this knowledge that we believe might provide leverage for the learning of subjects

other than computing. If, as is now the case in the UK, it is mandatory for children as young as 7

years old to ‘understand what algorithms are’ and ‘how they are implemented’ as well as

appreciating that “programs execute by following precise and unambiguous instructions”, it

would be surprising if there were no scope to rebuild a mathematics curriculum that exploited

this ‘new’ knowledge. In SM, for example, we are attempting to construct learning sequences

that use knowledge of algorithms to construct mathematical meaning for concepts such as place

value, variable, symmetry and coordinates. While it is too early to report on the success of this

venture, we are reasonably confident that we will at least emerge with an existence theorem that

indicates future possibilities for the learning of mathematics and, perhaps, other curriculum

subjects.

BEYOND JAM SANDWICHES AND CUPS OF TEA

References

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing

Computational Thinking in Compulsory Education.

Clements, D. H. (1999). The future of educational computing research: The case of computer

programming. Information Technology in Childhood Education Annual, 1, 147-179.

Clements, D. H., & Sarama, J. (1997). Research on Logo: A Decade of Progress. Computers in

the Schools, 14, 9-46.

Du Boulay, J. B. H. (1980). Teaching teachers mathematics through programming. International

Journal of Mathematical Educational In Science and Technology, 11, 347-360.

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin, D. (2014). Identifying elementary

students' pre-instructional ability to develop algorithms and step-by-step instructions.

Proceedings of the 45th ACM technical symposium on Computer science education.

Foerster, K.-T. (2016). Integrating Programming into the Mathematics Curriculum: Combining

Scratch and Geometry in Grades 6 and 7. Paper presented at the Proceedings of the 17th

Annual Conference on Information Technology Education.

Futschek, G., & Moschitz, J. (2010). Developing algorithmic thinking by inventing and playing

algorithms. Paper presented at the Proceedings of the 2010 Constructionist Approaches to

Creative Learning, Thinking and Education: Lessons for the 21st Century

(Constructionism 2010).

Futschek, G., & Moschitz, J. (2011). Learning algorithmic thinking with tangible objects eases

transition to computer programming. International Conference on Informatics in Schools:

Situation, Evolution, and Perspectives.

Gujberova, M., & Kalas, I. (2013). Designing productive gradations of tasks in primary

programming education. Paper presented at the Proceedings of the 8th Workshop in

Primary and Secondary Computing Education.

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for research in

mathematics education, 396-428.

Howe, J., & O'Shea, T. (1978). Computational Metaphors for Children. Human and Artificial

Intelligence.

Hoyles, C., & Noss, R. (1987a). Children working in a structured Logo environment: From doing

to understanding. Recherches en Didactiques des Mathematiques, 8(12), 131-174.

Hoyles, C., & Noss, R. (1987b). Synthesizing mathematical conceptions and their formalization

through the construction of a Logo‐based school mathematics curriculum. International

Journal of Mathematical Education in Science and Technology, 18(4), 581-595.

Kabatova, M., Kalas, I., & Tomcsanyiova, M. (2016). Programming in Slovak Primary Schools.

Olympiads in Informatics, 10, 125-159.

Misfeldt, M., & Ejsing-Dunn, S. (2015). Learning mathematics through programming: An

instrumental approach to potentials and pitfalls. CERME 9th Congress of the European

Society for Research in Mathematics Education.

Moschovakis, Y. N. (2001). What is an algorithm. Mathematics unlimited–2001 and beyond, 2,

919-936.

Noss, R. (1986). Constructing a conceptual framework for elementary algebra through Logo

programming. Educational Studies in Mathematics, 17(4), 335-357.

BEYOND JAM SANDWICHES AND CUPS OF TEA

Noss, R. (1987a). Children's learning of geometrical concepts through Logo. Journal for

research in mathematics education, 343-362.

Noss, R. (1987b). How do children do mathematics with LOGO? Journal of Computer Assisted

Learning, 3, 2-12.

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and

computers.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas.

Papert, S. (1987). Computer criticism vs. technocentric thinking. Educational Researcher, 17(1),

22-30.

Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal,

39, 720-729.

Passey, D. (2016). Computer science (CS) in the compulsory education curriculum: implications

for future research. Education and Information Technologies, 1-23.

Resnick, M., Maloney, J., Monroy-Hernández, A. R., N., Eastmond, E., Brennan, K., Millner, A.,

. . . Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52, 60-

67.

Serafini, G. (2011). Teaching programming at primary schools: visions, experiences, and long-

term research prospects. Paper presented at the International Conference on Informatics

in Schools: Situation, Evolution, and Perspectives.

Tsalapatas, H., Heidmann, O., Alimisi, R., & Houstis, E. (2012). Game-based programming

towards developing algorithmic thinking skills in primary education. Scientific Bulletin of

the "Petru Maior" University of Targu Mures, 9, 56.

Watt, S. (1998). Syntonicity and the psychology of programming. Proceedings of 10th Annual

Meeting of the Psychology of Programming Interest Group.

Wing, J. M. (2011). Research Notebook: Computational Thinking - What and Why? The Link.

Retrieved from https://www.cs.cmu.edu/link/research-notebook-computational-thinking-

what-and-why

https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

BEYOND JAM SANDWICHES AND CUPS OF TEA

Tables

Table 1

Overview of Schools (EAL = English as an Additional Language i.e. non-native English speaker,

SEN = Special Educational Needs)

School No. of pupils completing

task

No. of

pupils

interviewed

School A

Large inner-city primary,

high EAL, high SEN

27

(16 girls, 11 boys)

3 pairs

School B

Large rural primary, low

EAL, low SEN

22

(13 girls, 9 boys)

6 pairs

School C

Large rural faith primary,

low EAL, low SEN

56 (2 classes)

(25 girls, 28 boys, 3

unknown)

4 pairs, 1

individual

School D

Average-sized urban catholic

primary, high EAL, high

SEN

21

(10 girls, 11 boys)

5 pairs

School E

Average-sized urban faith

primary, low EAL, high SEN

26

(11 girls, 15 boys)

4 pairs

BEYOND JAM SANDWICHES AND CUPS OF TEA

School F

Large urban junior school,

low EAL, low SEN

29

(13 girls, 16 boys)

6 pairs

Total 181

(88 girls, 90 boys, 3

unknown)

57 pupils

BEYOND JAM SANDWICHES AND CUPS OF TEA

Table 2

Five algorithm scripts included in the task

Script Outcome Key Features

A

 Same start and end

position – drawn

from the centre

 Repeat block used in

a meaningful way

 Uses a definition to

abstract the ‘arm’ of

the cross

B

 Different start and

end point

 All steps visible – no

repeat

 Single script

 Sprite covers least

distance (note –

cannot compare to

moving via

coordinates)

BEYOND JAM SANDWICHES AND CUPS OF TEA

C

 Different start and

end point

 Absolute positioning

of sprite

 Uses definition to

replace a single block

(redundant)

 Pen up

 Greatest variety of

blocks

 Models paper and

pencil drawing

D

 Same start and end

point – drawn from

centre

 Repeat block used in

a meaningful way

 Sprite only moves

forward (no negative

numbers)

 Single script

BEYOND JAM SANDWICHES AND CUPS OF TEA

E

 Same start and end

point – drawn from

centre

 Repeat block used in

a meaningful way

 Follows same

algorithm as Script A

but in a single script

(no definition)

BEYOND JAM SANDWICHES AND CUPS OF TEA

Table 3

Fence created using a repeated row of crosses

Fence Script Key Features

 more complex fence pattern intended

to trigger the idea of a repeating

component

 alternating colours to highlight the

embedded component

 engages the consideration of a

‘construction’ plan: where is the start

position, where does it end, how do

neighbouring components connect

 highlights power of abstraction by

thinking about a component as a one

step subtask

 a challenging question away from a

computer

BEYOND JAM SANDWICHES AND CUPS OF TEA

Table 4

Overview of pupils understanding of the term 'algorithm' (G = girl; B = boy)

School Proportion

of pupils

attempted

question

Basic

definition

Advanced

definition

Appropriate examples

School

A

3/25 3/3 (1G, 2B) 0/3 Scratch (3)

School

B

4/22 3/4 (2G, 1B) 0/4 Scratch (3), Incorrect (1)

School

C

12/56 11/12 (1G,

9B, 1

unknown)

1/12 (1B) Scratch (5), Other (1), Incorrect

(2), None (4)

School

D

2/21 1/2 (1G) 0/2 Other (1), Non-code (1)

School

E

1/26 1/1 (1B) 0/1 Other (1)

School

F

24/29 20/24 (9G,

11B)

1/24 (1B) Scratch (14), Other (1), Non-code

(2), Incorrect (5), None (2)

BEYOND JAM SANDWICHES AND CUPS OF TEA

Table 5

Proportion of pupils selecting each script

Question Script

A

Script

B

Script C Script D Script E

(4) Easiest

 Hardest

75/179

6/179

9/179

10/179

4/179

156/179

21/179

5/179

70/179

2/179

(5) Easy to read 68/176 12/176 3/176 11/176 82/176

(6) Get best

mark

40/167 13/167 84/167 9/167 21/167

(7) Use to draw

fence

17/129 22/129 60/129 10/129 20/129

BEYOND JAM SANDWICHES AND CUPS OF TEA

Table 6

Key sub-themes for perceived ease or difficulty of an algorithm

Sub-theme Justification Example Quote

Easy

Small

number of

blocks

Easy to build,

understand and

modify

More efficient

“I thought [Script E] was the easiest because it looks

simple, it doesn’t have like that many steps to it, it

just has about around four to five blocks.”

Use of

definition

Shortened script

Made it easier to

build

Reusable

“The arm is defined so you don’t have to put that

piece of script in. And all you need to do is just turn

90 degrees right and just do arm and just repeat it.”

“Because maybe if you want to do a different script

you could use the same block.”

No

definition

Single script

Quicker and easier

to build

“Because I thought it was a little bit easier to follow

– just all in one block – instead of it having in two

different places, so you have to follow in two.”

Use of

repeat

Reduces number of

blocks

“And also the repeat block helps it to repeat and you

don’t have to write all the steps again and again.”

Difficult

BEYOND JAM SANDWICHES AND CUPS OF TEA

Large

number of

blocks

Harder to

understand

Takes longer to

build

“I thought because [Script C] was quite long and it

would make Scratch a bit boring. If you could use a

quicker way it would, I mean you’re always thinking

of quicker ways to do things and you’re thinking of

the best ways to do things and how it’s going to be

fully complete and that’s why I think the shortest

codes can get more out of Scratch.”

High

diversity of

blocks

More difficult to

build

“Because you have to go into loads of things and get

a load of things out and then put them all together

and it takes … and you can just use repeat to make it

shorter.”

Choice of

blocks

Increased difficulty

if they were

complicated or

unfamiliar

“Because it was so much more complicated to

follow, with x and y; to visualise it was harder.”

Redundancy

of blocks

Unnecessary define

block

Adds complexity

“It unnecessarily creates the line, which line for a

single block, so that's just like making a value for

something that was only a single block, which

defeats the point of creating a block and then it uses

lots of unnecessary codes that it doesn't really need.”

BEYOND JAM SANDWICHES AND CUPS OF TEA

Table 7

Key sub-themes for readability, teacher assessment and extension of algorithm

Sub-theme Justification Example Quote

Readability

Shorter

scripts

Easier to

remember

“Because you can remember that because it is a small

script but when it is a big script you forget what the

first one is.”

No

definitions

Less to remember “Yeah, you have to find what arm means and then so

you have to keep that in your head and figure out what

that is at the same time.”

Use of

definitions

Made it shorter

“Because when I saw the sheet I saw that it told me

where define arm was so I was thinking well that’s

pretty easy to read because if that wasn’t there you

wouldn’t know well, what’s in the arm but that’s there

so it’s easier to read for me.”

Choice of

blocks

Familiarity

“It’s because mostly all of the ones [blocks] in E

we’ve already like looked [teacher] showed it to us.”

Use of

repeat

Less to read “I like it with the repeat blocks, so like you don’t have

to read it. Like if it was ten, you wouldn’t have to read

it ten times.”

Teacher assessment

BEYOND JAM SANDWICHES AND CUPS OF TEA

Longer

scripts

Demonstrated

effort

“Because [Script C] is the longest and you’ve got like

more like work and like if it works it’s really good and

you know how to do like hard stuff.”

Shorter

scripts

Simpler “[Script A] might be like short but might make the sprites

do something really awesome, like she might think it’s

impressive, so short but powerful.”

Use of

definitions

Simpler

Shorter script

“I think she would like A the best because it is quite

simple, and she would probably prefer if you use the

define, it shortens the sequence.”

Choice of

blocks

Demonstrates

complexity,

advanced

understanding

and/or creativity

“Because then you’re using more blocks and she can tell

that you’ve obviously understood more about it and

things like that.”

Efficiency Simplest, quickest

way

“I put E again because in coding and maths you're always

looking for the simplest, quickest way to do things, E has

that, it's very efficient and fast and it gets around the

problem quickly.”

Extension

Finish

position of

sprite

Finishes in the

nearest place to

start drawing the

next cross

“I put C because like, you know on the picture it

shows like you go, then it ends there so you might

have to like tweak it a little bit but you could just

make it carry on drawing another.”

BEYOND JAM SANDWICHES AND CUPS OF TEA

Same

start/finish

position

Need to add the

least number of

blocks

“I would use A, D or E because unlike the others

that start in the same position so you don't need

to use code to get them back into the same

position and you could simply then use A go t,

then you could simply use change x by negative

50, negative 100 I mean, to get it to the next

place and it would come back into the same place

and you'd keep getting it along and along and

along.”

BEYOND JAM SANDWICHES AND CUPS OF TEA

Figures

Figure 1 - Scripts and resulting patterns for the algorithms: 1. move-turn-stamp (left) and 2.

move-turn-move back-stamp (right)

Figure 2 - The algorithm on the left can be modified by changing the costume of the sprite, or the

steps, angle and number of repeat

BEYOND JAM SANDWICHES AND CUPS OF TEA

Figure 3 - Example of a pupil answer to question 7 (drawing a fence)

