368 research outputs found

    Shear stress rosettes capture the complex flow physics in diseased arteries

    Get PDF
    Wall shear stress (WSS) is an important parameter in arterial mechanobiology. Various flow metrics, such as time averaged WSS (TAWSS), oscillatory shear index (OSI), and transWSS, have been used to characterize and relate possible WSS variations in arterial diseases like aneurysms and atherosclerosis. We use a graphical representation of WSS using shear rosettes to map temporal changes in the flow dynamics during a cardiac cycle at any spatial location on the vessel surface. The presence of secondary flows and flow reversals can be interpreted directly from the shape of the shear rosette. The mean WSS is given by the rosette centroid, the OSI by the splay around the rosette origin, and the transWSS by its width. We define a new metric, anisotropy ratio (AR), as the ratio of the length to width of the shear rosette to capture flow bi-directionality. We characterized the flow physics in controls and patient specific geometries of the ascending aorta (AA) and internal carotid artery (ICA) which have fundamentally different flow dynamics due to differences in the Reynolds and Womersley numbers. The differences in the flow dynamics are well reflected in the shapes of the WSS rosettes and the corresponding flow metrics

    A biomechanical model for fibril recruitment: Evaluation in tendons and arteries

    Get PDF
    Simulations of soft tissue mechanobiological behaviour are increasingly important for clinical prediction of aneurysm, tendinopathy and other disorders. Mechanical behaviour at low stretches is governed by fibril straightening, transitioning into load-bearing at recruitment stretch, resulting in a tissue stiffening effect. Previous investigations have suggested theoretical relationships between stress-stretch measurements and recruitment probability density function (PDF) but not derived these rigorously nor evaluated these experimentally. Other work has proposed image-based methods for measurement of recruitment but made use of arbitrary fibril critical straightness parameters. The aim of this work was to provide a sound theoretical basis for estimating recruitment PDF from stress-stretch measurements and to evaluate this relationship using image-based methods, clearly motivating the choice of fibril critical straightness parameter in rat tail tendon and porcine artery. Rigorous derivation showed that the recruitment PDF may be estimated from the second stretch derivative of the first Piola-Kirchoff tissue stress. Image-based fibril recruitment identified the fibril straightness parameter that maximised Pearson correlation coefficients (PCC) with estimated PDFs. Using these critical straightness parameters the new method for estimating recruitment PDF showed a PCC with image-based measures of 0.915 and 0.933 for tendons and arteries respectively. This method may be used for accurate estimation of fibril recruitment PDF in mechanobiological simulation where fibril-level mechanical parameters are important for predicting cell behaviour

    Modeling intracranial aneurysm stability and growth: An integrative mechanobiological framework for clinical cases

    Get PDF
    We present a novel patient-specific fluid-solid-growth framework to model the mechanobiological state of clinically detected intracranial aneurysms (IAs) and their evolution. The artery and IA sac are modeled as thick-walled, non-linear elastic fiber-reinforced composites. We represent the undulation distribution of collagen fibers: the adventitia of the healthy artery is modeled as a protective sheath whereas the aneurysm sac is modeled to bear load within physiological range of pressures. Initially, we assume the detected IA is stable and then consider two flow-related mechanisms to drive enlargement: (1) low wall shear stress; (2) dysfunctional endothelium which is associated with regions of high oscillatory flow. Localized collagen degradation and remodelling gives rise to formation of secondary blebs on the aneurysm dome. Restabilization of blebs is achieved by remodelling of the homeostatic collagen fiber stretch distribution. This integrative mechanobiological modelling workflow provides a step towards a personalized risk-assessment and treatment of clinically detected IAs

    The unexplained success of stentplasty vasospasm treatment

    Get PDF
    Background Cerebral vasospasm (CVS) following subarachnoid hemorrhage occurs in up to 70% of patients. Recently, stents have been used to successfully treat CVS. This implies that the force required to expand spastic vessels and resolve vasospasm is lower than previously thought. Objective We develop a mechanistic model of the spastic arterial wall to provide insight into CVS and predict the forces required to treat it. Material and Methods The arterial wall is modelled as a cylindrical membrane using a constrained mixture theory that accounts for the mechanical roles of elastin, collagen and vascular smooth muscle cells (VSMC). We model the pressure diameter curve prior to CVS and predict how it changes following CVS. We propose a stretch-based damage criterion for VSMC and evaluate if several commercially available stents are able to resolve vasospasm. Results The model predicts that dilatation of VSMCs beyond a threshold of mechanical failure is sufficient to resolve CVS without damage to the underlying extracellular matrix. Consistent with recent clinical observations, our model predicts that existing stents have the potential to provide sufficient outward force to successfully treat CVS and that success will be dependent on an appropriate match between stent and vessel. Conclusion Mathematical models of CVS can provide insights into biological mechanisms and explore treatment approaches. Improved understanding of the underlying mechanistic processes governing CVS and its mechanical treatment may assist in the development of dedicated stents

    Barriers to identifying eating disorders in pregnancy and in the postnatal period: a qualitative approach.

    Get PDF
    BACKGROUND: Eating Disorders (ED) are mental health disorders that typically effect women of childbearing age and are associated with adverse maternal and infant outcomes. UK healthcare guidance recommends routine enquiry for current and past mental illness in antenatal and postnatal care for all women, and that pregnant women with a known ED are offered enhanced monitoring and support. Midwives and health visitors are ideally placed to identify and support women with ED as they are often the primary point of contact during the antenatal and postnatal periods. However, research on the barriers to identifying ED in the perinatal period is limited. This study aimed to understand the barriers to disclosure and identification of ED in pregnancy and postnatally as perceived by women with past or current ED, and midwives and health visitors working in the UK National Health Service. METHODS: Two studies were undertaken: mixed-measures survey of pregnant and postnatal women with current or past ED; focus groups with student and qualified midwives and health visitors. RESULTS: Five themes emerged on the barriers to disclosure in pregnancy as perceived by women: stigma, lack of opportunity, preference for self-management, current ED symptomatology and illness awareness. Four themes were identified on the barriers to identification of ED in pregnancy and in the postnatal period as perceived by health professionals: system constraints, recognition of role, personal attitudes, and stigma and taboo. CONCLUSIONS: Several barriers to the identification of ED during and after pregnancy were described, the main factors were stigma and poor professional training. Perinatal mental health is becoming increasingly prioritised within national policy initiatives; however, ED continue to be neglected and increased awareness is needed. Similarly, clinical guidance aimed at responding to the rising prevalence of obesity focus on changing nutrition but not on assessing for the presence of ED behaviours that might be affecting nutrition. Improving education and training for health professionals may contribute to reducing stigma and increase confidence in identifying ED. The barriers identified in this research need to be addressed if recognition and response to women with ED during the perinatal period is to improve

    Ice-confined construction of a large basaltic volcano—Austurfjöll massif, Askja, Iceland

    Get PDF
    Austurfjöll is the largest basaltic glaciovolcanic massif at Askja volcano (Central Iceland), and through detailed studies of its volcanological and geochemical characteristics, we provide a detailed account of the sequence and structure of the ice-confined construction of a large Icelandic basaltic volcano. In particular, Austurfjöll represents a geometry of vents, and resulting glaciovolcanic morphology, not previously documented in ice-confined basaltic volcanoes. Austurfjöll was constructed during two major phases of basaltic volcanism, via seven eruptive episodes through disperse fissure-dominated eruptions. The earliest episode involved a rare and poorly exposed example of subaerial activity, and this was succeeded by six episodes involving the eruption of ice-confined pillow lavas and numerous overlapping fissure eruptions of phreatomagmatic tephra. Evidence of local subaerial lavas and tephras indicates the local growth of eruptive centers above englacial lake levels, and subsequent flooding, but no prolonged subaerial activity. Localized ice-contact facies, paleowater levels, and diamictons indicate the position and thickness of the ice was variable during the construction of Austurfjöll, and eruptive activity likely occurred in multiple and variable level meltwater lakes during the last glacial period. Lithofacies evidence including gradational transitions from effusive to explosive deposits, superposition of fragmental facies above coherent facies, and drainage channels suggest that changes in eruptive style were driven largely by external factors such as drainage and the increasing elevation of the massif. This study emphasizes the unique character of Austurfjöll, being composed of large pillow lava sheets, numerous (> 40) overlapping glaciovolcanic tindars, and only localized emergent deposits, as a product of its prolonged ice-confined eruptive history, contrasts with previous descriptions of tuyas and tindars

    The PTEN Phosphatase Controls Intestinal Epithelial Cell Polarity and Barrier Function: Role in Colorectal Cancer Progression

    Get PDF
    The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells

    Activation of Akt by the Bacterial Inositol Phosphatase, SopB, is Wortmannin Insensitive

    Get PDF
    Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway
    corecore