7,098 research outputs found

    Kinetics and mechanism of the reaction between atomic chlorine and dimethyl selenide; comparison with the reaction between atomic chlorine and dimethyl sulfide

    Get PDF
    Dimethyl selenide is the most abundant gaseous selenium species in marine environments. In this work, the value of the rate coefficient for the gas-phase reaction between dimethyl selenide and Cl atoms has been determined for the first time. The value of the second-order rate coefficient obtained was (5.0±1.4)×10–10 cm3 molecule–1 s–1. The very fast nature of the reaction means that, when estimating the lifetime of dimethyl selenide in the atmosphere, loss due to reaction with Cl atoms should be considered along with loss due to reaction with O3 and with OH and NO3 radicals. Analysis of the available kinetic data suggests that at 760 Torr the dominant reaction pathway for the reaction of Cl atoms with dimethyl selenide will be the addition of Cl to the Se atom forming an adduct of the type CH3Se(Cl)CH3. Theoretical calculations, at the B3LYP/6-311++G(2df,p)//B3LYP/6-311++G(d,p) level of theory, show that at 298 K the value of rH for the formation of the adduct is –111.4 kJ mol–1. This value may be compared to –97.0 kJ mol–1, the value calculated for rH for the formation of the analogous sulfur adduct, CH3S(Cl)CH3, following the reaction between Cl atoms and dimethyl sulfide. Variational RRKM theory was used to predict the thermal decomposition rates of the two adducts back to starting materials. The estimated rate constant for the decomposition of the selenium adduct to the reactants is 5×10–5 s–1, compared to 0.02 s–1 in the case of the sulfur adduct. However, our calculations suggest that the CH3Se(Cl)CH3 adduct, which is initially formed highly excited, will not be stabilised under atmospheric conditions, but rather will decompose to yield CH3SeCl and CH3, a process that is calculated to be exothermic with respect to the initial reactants by 5.8 kJ mol–1. The formation of CH3SCl and CH3 from the sulfur adduct, on the other hand, is endothermic by 20.8 kJ mol–1 with respect to the initial reactants, and is thus not expected to occur

    Holographic Operator Mixing and Quasinormal Modes on the Brane

    Get PDF
    We provide a framework for calculating holographic Green's functions from general bilinear actions and fields obeying coupled differential equations in the bulk. The matrix-valued spectral function is shown to be independent of the radial bulk coordinate. Applying this framework we improve the analysis of fluctuations in the D3/D7 system at finite baryon density, where the longitudinal perturbations of the world-volume gauge field couple to the scalar fluctuations of the brane embedding. We compute the spectral function and show how its properties are related to the quasinormal mode spectrum. We study the crossover from the hydrodynamic diffusive to the reactive regime and the movement of quasinormal modes as functions of temperature and density. We also compute their dispersion relations and find that they asymptote to the lightcone for large momenta.Comment: 42 pages, 12 figure

    Digest: In re David V.

    Get PDF

    A GENERALIZED FINITE DIFFERENCE METHOD FOR TRANSIENT HEAT CONDUCTION ANALYSIS-SHORT COMMUNICATION

    Get PDF
    This short communication presents a meshless local B-spline basis functions-finite difference (FD) method for transient heat conduction analysis. The method is truly meshless as only scattered nodal distribution is required in the problem domain. It is also simple and efficient to program. As it has the Kronecker delta property, the imposition of boundary conditions can be incorporated efficiently. In the method, any governing equations are discretized by B-spline approximation in the spirit of FD technique using local B-spline collocation. It hence belongs to a generalized FD method, in which any derivative at a point or node is stated as neighbouring nodal values based on the B-spline interpolants. Numerical results show the effectiveness and efficiency of the meshless method for analysis of transient heat conduction in complex domain

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments

    Effective Free Energy for Individual Dynamics

    Full text link
    Physics and economics are two disciplines that share the common challenge of linking microscopic and macroscopic behaviors. However, while physics is based on collective dynamics, economics is based on individual choices. This conceptual difference is one of the main obstacles one has to overcome in order to characterize analytically economic models. In this paper, we build both on statistical mechanics and the game theory notion of Potential Function to introduce a rigorous generalization of the physicist's free energy, which includes individual dynamics. Our approach paves the way to analytical treatments of a wide range of socio-economic models and might bring new insights into them. As first examples, we derive solutions for a congestion model and a residential segregation model.Comment: 8 pages, 2 figures, presented at the ECCS'10 conferenc

    Treatment response in relation to inflammatory and axonal surrogate marker in multiple sclerosis

    Get PDF
    BACKGROUND: This study aimed to investigate if treatment response could retrospectively be related to inflammatory or axonal pathology as measured by plasma surrogate markers. METHODS: In this 1-year observational study 30 multiple sclerosis (MS) patients with relapsing-remitting disease were treated with intramuscular IFNbeta-1a or subcutaneous IFNbeta-1b. Responders and nonresponders were defined according to clinical and magnetic resonance imaging criteria. The control group consisted of 14 healthy subjects. Plasma levels of surrogate markers for inflammation (nitric oxide metabolites (NOx)), astrocytic activation (S100B) and axonal damage (NfH(SM135)) were measured using standard assays. RESULTS: There were 11 nonresponders and 19 responders to IFNbeta treatment. Median S100B levels were elevated in a higher proportion of treatment responders (63%, 42.9 pg/mL) compared to nonresponders (18%, 11.7 pg/mL, P < 0.05, Fisher's exact test) and controls (0%, 2 pg/mL, P < 0.001). Levels of NOx were found to be more frequently elevated in nonresponders (72%, 39 microM) compared to healthy controls (0%, 37 microM, P < 0.05). Levels of NfH(SM135) were more frequently elevated in responders (58%, 300 pg/mL, P < 0.001) and nonresponders (72%, 500 pg/mL, P < 0.001) compared to controls (0%, 4.5 pg/mL). CONCLUSION: Patients with relapsing-remitting MS who had surrogate marker supported evidence for astrocytic activation responded more frequently to treatment with IFNbeta

    A note on conductivity and charge diffusion in holographic flavour systems

    Full text link
    We analyze the charge diffusion and conductivity in a Dp/Dq holographic setup that is dual to a supersymmetric Yang-Mills theory in p+1 dimensions with N_f<< N_c flavour degrees of freedom at finite temperature and nonvanishing U(1) baryon number chemical potential. We provide a new derivation of the results that generalize the membrane paradigm to the present context. We perform a numerical analysis in the particular case of the D3/D7 flavor system. The results obtained support the validity of the Einstein relation at finite chemical potential.Comment: 15 pages, 3 figures, v2 with minor correction
    corecore