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Abstract: We provide a framework for calculating holographic Green’s functions

from general bilinear actions and fields obeying coupled differential equations in the

bulk. The matrix-valued spectral function is shown to be independent of the radial

bulk coordinate. Applying this framework we improve the analysis of fluctuations

in the D3/D7 system at finite baryon density, where the longitudinal perturbations

of the world-volume gauge field couple to the scalar fluctuations of the brane em-

bedding. We compute the spectral function and show how its properties are related

to the quasinormal mode spectrum. We study the crossover from the hydrodynamic

diffusive to the reactive regime and the movement of quasinormal modes as functions

of temperature and density. We also compute their dispersion relations and find that

they asymptote to the lightcone for large momenta.
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1. Introduction

The regime of application of the gauge/gravity correspondence [1] is quickly being

extended to cover ever more diverse areas of theoretical physics. Its utility derives

from the fact that it is a weak/strong coupling duality, meaning that by studying

classical gravity we can obtain information about strongly coupled gauge theories.

One reason for the growth in this applicability is due to the fact that the correspon-

dence allows the calculation of real time Green’s functions at finite temperature and

density [2]. This paves the way to obtaining physical transport coefficients, such as

the shear viscosity and the conductivity.

The original conjecture relating N = 4 Super Yang Mills to type IIB super-

gravity in AdS5 × S5 has been generalized to cover many other gauge theories by

considering different gravitational backgrounds (not necessarily derived from critical

string theory, e.g. [3]). Usually, such generalizations only include fields in the adjoint

representation of the gauge group. It was shown in [4] how to add matter in the fun-

damental representation, by considering D7-branes extended along the Minkowski

and radial directions and wrapping an S3 inside the S5. These fundamental branes

are typically studied in the limit in which they do not backreact on the geometry

of the D3-branes. This means that the quarks do not contribute to the dynam-

ics beyond tree-level - it is the quenched approximation. Further generalizations

added temperature to the system by considering black D3-branes, holographically

describing a thermal field theory [5].

The finite temperature plasma phase of strongly coupledN = 4 SYM is modelled

as an asymptotically AdS black hole with planar horizon topology. The D7-branes

can be embedded in two rather different ways with completely different gauge theory

phenomenology. If the D7-brane does not enter the horizon the fields on it have

a discrete spectrum of normal modes whose dual interpretation is as stable mesons

(quark-antiquark bound states - nb. not confined) [6]. Instead , if the D7-brane

reaches the horizon, the modes are quasinormal with complex frequncies [7]. In

certain ranges of the parameter space [8] these quasinormal modes lie close to the

real axis. Then the spectral function exhibits sharp peaks that we may interpret as

quasiparticle states. These ‘black hole’ embeddings are then naturally associated to

the high temperature phase (with respect to the quark mass) in which the quarks

can not form long lived bound states – the mesons melt into the surrounding adjoint

plasma.

A particularly interesting generalization of this setup is provided by the inclusion

of finite baryon density [9, 10]. Due to the presence of electric flux on the D7-brane

- the holographic dual of finite baryon density – the brane is forced to end on the

horizon. The flux can not end on a shrinking S3 and has to fall into the black

hole. The study of the meson spectral functions in this setting has attracted interest
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in the past and it was shown that for low densities and low temperature to quark

mass ratios the spectral functions present peaks corresponding to long lived states

that approach the zero temperature meson masses of the Minkowski embeddings at

vanishing density [11].

As has been appreciated before [12, 13], the fluctuations of the longitudinal

vector and scalar components couple when the effects of baryon density are taken

into account, making the analysis of this sector much more involved. Physically the

coupling occurs because a perturbation in the scalar sector is a modification of the

brane embedding and this has to backreact on the charge distribution on the brane,

which in turn modifies the form of the fluctuation equations for the electric fields on

the brane.

At finite density all consistent embeddings are of the black hole type and the

dynamics of the system can be described in terms of its quasinormal modes. Since

we now have to deal with a system of coupled differential equations, we ought to

state precisely the new prescription that generalizes the computation of quasinormal

modes. A similar problem has been considered before in the context of holographic

superconductors, and here we extend the formalism put forward in [14] to a generic

bilinear bulk action. We explictely construct the matrix of retarded Green’s func-

tions. From it, the spectral function matrix can be derived and we prove that it is

fully independent of the radial bulk coordinate, a result that was known for single

field correlators. In turn, the quasinormal modes can then be defined as zeroes of

the determinant of a maximal set of linearly independent solutions evaluated at the

boundary of AdS space.

The paper is organized as follows. In section 2 we develop the formalism which

allows us to define a matrix of retarded Green’s functions for a coupled system from

the original bilinear action. We show that the matrix-valued spectral function can

be interpreted as the matrix of Noether currents of a collection of global U(1) bulk

symmetries. Finally we explain how to calculate the quantities of interest in the case

in which the solutions have to be found using numerical methods.

In section 3 we summarize the description of the quenched D3/D7 system in the

presence of baryon density, focusing on the fluctuations of the longitudinal electric

field and the embedding profile.

In section 4 we apply our general formalism to this system and describe the

results obtained, focusing on the effects of the mixing in the system.

2. General formalism and methods

2.1 Holographic operator mixing

In the holographic context, operator mixing under the RG flow manifests itself as a
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coupled system of differential equations. In some contexts the system of equations

may be separable, but generically, when the mixing matrices between the derivative

and non-derivative terms differ from each other, this is not so. In the present case

we focus on non-separable systems where an analysis of the coupled set of differen-

tial equations is necessary. Consequently, holographically obtaining the sources and

expectation values of the mixed operators corresponds to finding a particular set of

solutions to the coupled system of equations. With this aim in mind we consider

here a general bilinear bulk action for N fields ΦI , I ∈ {1, · · · , N}

S =

∫
ddx

∫
dz
[
∂mΦIAIJ(x, z)∂nΦJγmn + ΦIBm

IJ(x, z)∂mΦJ + ΦICIJ(x, z)ΦJ
]
,

(2.1)

where m,n span the Minkowski and radial coordinates (x ∼ xµ, z). i.e., we consider

that the fields ΦI(x, z) and the matrices AIJ(x, z), BIJ(x, z) and CIJ(x, z) have no

dependence on any transverse coordinate, which we integrate out in the action S.

Furthermore, apart from being real, no symmetry properties will be assumed for

these couplings1. Inserting the Fourier transform

ΦI(xµ, z) =

∫
ddk

(2π)d
ΦI
k(z)e−ikx , (2.2)

into (2.1), standard manipulations lead to an action for the Fourier modes of the

following general form2

S =

∫
ddk

(2π)d

∫
dz
[
Φ′

I
−kAIJ(k, z)Φ′

J
k + ΦI

−kBIJ(k, z)Φ′
J
k + ΦI

−kCIJ(k, z)ΦJ
k

]
,

(2.4)

with k ≡ kµ, AIJ(−k, z) = AIJ(k, z)∗, and equivalently for B and C. Now in

order to avoid double counting, we split the momentum integration into “positive”

(k> = (ω>0,q)) and “negative” (k< = (ω<0,q)) momenta. Thus

S =

∫
dk̃>

∫
dz
[
2AHIJΦ′

I
−kΦ

′J
k +BIJΦI

−kΦ
′J
k +B†IJΦ′I−kΦ

J
k + 2CH

IJΦI
−kΦ

J
k

]
, (2.5)

1This is because we are interested in a system with finite baryon density, modelled by the
presence of a background A0 component of a U(1) gauge field. In such setups the γ in equation
(2.1), while not being symmetric, plays the rôle of the induced metric.

2In going from (2.1) to (2.4) we relate

AIJ(k, z) = ASIJ(x, z)γzz , (2.3a)

BIJ(k, z) = −2ikµγµzAAIJ(x, z) +BzIJ(x, z) , (2.3b)

CIJ(k, z) = −kµkνASIJ(x, z)− ikµBµIJ(x, z) + CIJ(x, z) , (2.3c)

where the superscript S(A) denotes (anti-)symmetrization i.e. MS,A
IJ = 1

2 (MIJ ±MJI). Notice
that in (2.5) we have admitted a slight generalization in which A has a k dependence. This will be
the case when one performs complex valued changes of variables like the one for the gauge invariant
combination E|| = i(ωA1 + qA0) which will be needed later.
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where
∫
dk̃> ≡ 1

(2π)d

∫∞
0
dω
∫

Rd−1 d
d−1q. Hereafter k will always be assumed to be

“positive”, k = k>. Also MH,A now stands for the (anti-)hermitian part MH,A =
1
2
(M ±M †). Written in this form, a given mode, say ΦI

k=(1,1,0,0), only enters once in

each bilinear term 3. Varying ΦI
−k, holding ΦI

k fixed, the Euler-Lagrange equations

of motion follow

[E.O.M.]ΦI−k = −2(AHIJΦ′Jk )′ + 2BA
IJΦ′Jk + (2CH −B†′)IJΦJ

k = 0 . (2.6)

Upon solving the equations of motion (2.6), one may find that asymptotically

near the boundary4, the components of the vector Φ go like ΦI(z → 0) ∼ z∆I
−φI0 +

... + z∆I
+φI1 + .... Namely ∆I

− is the smallest exponent at the boundary z = 0. In

order to compute the Green’s functions of the dual quantum operators we choose to

consider conveniently normalized fields Φk(z) = z∆I
−Φ̄I

k(z) that close to the boundary

have an expansion Φ̄I(z → 0) = φI0 +O(z∆I
+−∆I

−), meaning that φI0 can be interpreted

as the source of the dual operator5. The new fields can be treated collectively in the

same formalism by defining the rescaling matrix DI
J = δIJz

∆J
− = D† IJ . Replacing

Φ by DΦ̄ inside (2.5) yields a new action of the same form

S =

∫
dk̃>

∫
dz
[
2ĀHIJΦ̄′

I
−kΦ̄

′J
k + B̄IJΦ̄I

−kΦ̄
′J
k + B̄†IJΦ̄′I−kΦ̄

J
k + 2C̄H

IJΦ̄I
−kΦ̄

J
k

]
, (2.7)

now with

ĀH = D†AHD , (2.8a)

B̄ = D†BD + 2D′†AHD , (2.8b)

C̄H = D†CHD +D′†AHD′ +
1

2
D†BD′ +

1

2
D′†B†D . (2.8c)

Hereafter we will assume without loss of generality that the fields are normalized in

this way. For these normalized fields the action is given by (2.7) and henceforth we

shall omit all bars.

2.2 Holographic Green’s functions

We now want to construct the precise solutions ΦI
k which are sources for operators

OI . The fact that the fields are solutions to a coupled system of differential equations

can be interpreted as the holographic dual of operator mixing. This means in turn

that we cannot simply speak of a single operator OI , but we must specify at which

3Alternatively one could use the reality condition ΦI−k = ΦI∗k and treat this field as independent
of ΦIk.

4Notice that we choose the radial variable to present the boundary at z → 0, thus the IR of the
theory will be at a positive scale zh.

5Care must be taken to ensure that such a mode is in fact non-normalizable. This is independent
of the redefinition discussed above.
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scale this is defined. The most natural choice is to define the operators in the UV

at a cutoff scale zΛ which will ultimately be taken to the boundary. In the example

discussed here there will be a generic U(1) gauge symmetry present on the world-

volume. Ultimately we want to think of the dual global U(1) symmetry as being

weakly gauged such that the spectral functions of the conserved current can be used

to calculate dilepton and photon production rates in a charged plasma along the lines

of [15]. The correct operator to be coupled to the electromagnetic photon in the field

theory is of course the one that sources only the electric current in the ultraviolet6.

We now construct ΦI
k’s that are solutions to the coupled set of N differential

equations in the bulk and whose boundary values serve as the sources for operators

OI(k). Concretely, let us set I = 1. A particular solution which sources O1 will be

given by a vector of functions (Φ1
k(z),Φ2

k(z), ...) that as we approach the UV cutoff

asymptotes to a single component vector, say (Φ1
k(z),Φ2

k(z), ...)
z→zΛ→ (ϕ1

k, 0, 0, ...).

The same is true for any I = 2, 3, · · · , N . Hence, collectively, a bulk solution dual

to a source OI0(k) is given by a set of functions {ΦI
k(z)} which solves the equations

of motion in the bulk and asymptote to ΦJ(zΛ) = δJ I0φ
I0
0 (k), J = 1, ..., N , where

φI00 (k) ≡ ϕI0k is the source of the corresponding operator OI0(k).

Because the system of differential equations is coupled, at any other scale z > zΛ

this set of functions, {ΦI
k(z)}, will in general source a linear combination of all the

operators. Hence, this set of functions can be written in terms of the boundary

values, ϕJk , as follows

ΦI
k(z) = F I

J(k, z)ϕJk , (2.9a)

ΦI
−k(z) = F I

J(−k, z)ϕJ−k = ϕJ−kF
†
J
I(k, z) , (2.9b)

with ϕIk arbitrary (sourcing the corresponding operators) and all the dynamics of the

fields encoded in the “solution matrix” F (k, z)I J = F (−k, z)∗IJ , normalized at the

UV cutoff radius zΛ, such that

F (k, zΛ)I J = δIJ . (2.10)

Any complete set of independent solutions to the equations of motion is enough to

build the matrix F , and we shall give a concrete prescription below. For the time

being, let us assume that this matrix has been constructed. The usual prescription

proposed in [2] to obtain the Green’s function is generalized in the present setup as

follows. Rewrite the action (2.5) by freeing the ΦI
−k fields from derivatives. After

inserting (2.9a) the action can be written as follows

S =

∫
dk̃>

∫
dz

[
ΦI
−k[E.O.M.]ΦIk +

d

dz
[2AIJΦI

−kΦ
′J
k +B†IJΦI

−kΦ
J
k ]

]
=

∫
dk̃> ϕI−k FIJ(k, z)ϕJk

∣∣zh
zb
, (2.11)

6K.L. would like to thank G. Moore for a discussion on this point.
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where zh and zb = 0 stand for the limiting values of z at the horizon and the boundary

respectively. In the last line we passed to the on-shell action and defined the flux

matrix

F(k, z) = 2F †AHF ′ + F †B†F . (2.12)

From here, the natural generalization of the original Minkowskian AdS/CFT

prescription [2] is just7

GR
IJ(k) = − lim

zΛ→0
FIJ(k, zΛ) . (2.13)

Strictly speaking we have derived this relation for “positive” k = k>. However (2.13)

extends smoothly over to “negative” k = k<. To see this, one has to start however

from the same bulk action (2.5) and instead free ΦI
k from derivatives, hence making

use of the appropriate equations of motion. The boundary action then adopts exactly

the same form as in (2.11) with the replacement k → −k in the integrand. Given

the conjugation properties of the matrices A,B and F under change of sign in k this

is consistent with the required property of retarded Green’s function (see appendix

A)

GR
IJ(−k) = GR

IJ(k)∗ . (2.14)

To conclude this section, let us mention that the definition of the Green’s function

as given by equation (2.13) is still somewhat incomplete. The bilinear action we

wrote will generally present divergences at the boundary that must be regularized

by adding appropriate covariant counterterms to the action. These counterterms

change the definition of the flux matrix by

FIJ(k, zΛ)→ FIJ(k, zΛ)−Fct,IJ(k, zΛ) , (2.15)

which in the limit zΛ → 0 gives a finite answer. The exact form of the terms to be

added depends on the theory under consideration, and for the case studied in this

paper, the appropriate expression for Fct,IJ(k, zΛ) can be found in section 3.5.

2.3 The Green’s functions as bulk Noether currents

Due to the arbitrariness of the ϕIk, equation (2.6) implies the following[
−2(AHF ′)′ + 2BAF ′ + (2CH −B†′)F

]
IJ

= 0 . (2.16)

We can multiply this from the left by F J
M(−k, z) = FM

JT (k, z)∗ = F †M
J , thus

obtaining the following matrix statement

−2F †(AHF ′)′ + 2F †BAF ′ + F †(2CH −B†′)F = 0 . (2.17)

7In [16] the same authors also deal with a mixed operator situation. We seem to disagree with
their prescription (see eq. (4.26) there) in which diagonal and off diagonal components are treated
on different footings.
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Now proceeding as before, obtaining the equations of motion by varying ΦI
k, inserting

(2.9b), and then contracting from the right with F we end up with the adjoint version

of (2.17)

−2(F ′†AH)′F − 2F ′†BAF + F †(2CH −B′)F = 0 . (2.18)

Subtracting (2.18) from (2.17) and using (2.12) we obtain

d

dz

(
F(k, z)−F †(k, z)

)
IJ

= 0 . (2.19)

The fundamental reason for the conservation of so many quantities is because we

work at the bilinear level of the action. Once we have written this in terms of the Φk

and Φ−k we can assume the positive and negative frequency fields to be independent.

The complete bulk action (2.5) can be written as

S =

∫
dk̃>

[
ϕI−kS

(k)
IJ ϕ

J
k

]
, (2.20)

where SIJ is the matrix of 1-dimensional action functionals

S
(k)
IJ =

∫
dz L(k)

IJ (z) =

∫
dz
[
2F ′†AHF ′ + F †BF ′ + F ′†B†F + 2F †CHF

]
IJ
, (2.21)

for the N2 one-dimensional “operator mixing fields” F I
J(k, z). For each I, J we find

a U(1) symmetry F I
J(k, z)→ eiαIJF I

J(k, z). Hence, for each k, we obtain a matrix

of Noether currents

J
(k)
MN(z) = (+i)

∂L(k)
MN(z)

∂F ′IJ
F I

J + (−i)∂L
(k)

MN(z)

∂F ′†IJ
F †IJ

= i(2F ′†AHF + F †BF )MN − i(2F †AHF ′ + F †B†F )MN

= −i(F − F †)MN . (2.22)

The evaluation of this current in the case under consideration in this paper can be

found in section 3.4.

Notice that in terms of Green’s functions the z-independent quantity is precisely

the matrix spectral function, ρ(k) = i(GR(k) − GA(k)) (since GA(k) = GR(k)†, see

appendix A), which therefore turns out to be an RG flow invariant quantity. In fact,

the evaluation of the analog to this current for different systems was the tool used to

study the phenomena such as graviton absorption prior to the celebrated prescription

of Son and Starinets [2] (see for example [17, 18]).

2.4 Quasinormal modes

In gravitational scenarios there are different ways of defining quasinormal modes,

depending on the boundary condition we impose on the fluctuations of the fields.
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This degeneracy of boundary conditions is lifted in AdS/CFT by stating that the

quasinormal modes relevant for the holographic interpretation must correspond to

poles of the holographic Green’s functions [19]. Indeed, the Green’s function matrix

we have just defined will in general be a meromophic function of frequency and

momentum. We therefore define the quasinormal modes of the coupled system as

quasinormal modes↔ poles of GR(k) . (2.23)

In the analysis below we will focus on real positive values of the spatial momen-

tum, so the quasinormal modes will be given by complex frequencies ωn = Ωn + iΓn,

where −Γn gives the damping factor of each mode. The presence of modes with pos-

itive Γn signals instabilities of the system, as for these modes their amplitudes grow

with time. These unstable modes define tachyonic instabilities. Once the quasinor-

mal modes are known one can express the meromorphic Green’s function as a sum

over poles plus an analytic part8

GR(ω,q) =
∑
n=1

Rn(q)

ω − ωn(q)
+ T (ω,q) , (2.24)

whereRn(q) and T (ω,q) areN×N matrices with analytic components. As explained

in appendix A the spectral function and the causal Green’s function are related to

one another as follows

ρ(ω,q) = i
[
GR(ω,q)−GR(ω,q)†

]
. (2.25)

Provided we are exploring the real ω axis, the full spectral function matrix can be

expressed in the Breit-Wigner form as

Re [ρ] = −
∑
n=1

(ω − Ωn)( Im [Rn] + Im [Rn]T ) + Γn(Re [Rn] + Re [Rn]T )

(ω − Ωn)2 + Γ2
n

, (2.26a)

Im [ρ] = −
∑
n=1

(ω − Ωn)(Re [Rn]− Re [Rn]T ) + Γn( Im [Rn]− Im [Rn]T )

(ω − Ωn)2 + Γ2
n

, (2.26b)

plus the contribution from the analytic part. Notice that, consistently, the diagonal

terms of the spectral function are real.

From the discussion above we see that to determine the properties of the Green’s

function it is important not only to find the position of the quasinormal modes, but

also their residues. In appendix B a numerical recipe to obtain the residues can be

found. We have checked that the position and residues of the quasinormal modes

8We assume here that simple poles are the only non-analyticities in the holographic Green’s
functions. Although there is no proof so far in the literature this seems to be the case for the
non-extremal asymptotically AdS black holes of relevance here.
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obtained by the methods given here and by fitting the spectral function in the real-

frequency axis to a Breit-Wigner function give compatible answers, up to a smooth

analytic function of the frequency.

When dealing with a parity-invariant system, the retarded Green’s function sat-

isfies9 GR
ij(ω,q) = σiσjG

R
ij(−ω,q)∗ implying that poles must come in pairs such that

there is a relation between them

Rm,ij(q) = −σiσjR∗n,ij(q) , ωm(q) = −ω∗n(q) , (2.27)

for fixed m and n. This relation classifies the quasinormal modes into two different

types. On one hand, when n 6= m we observe that each mode has a “dual” mode

with position and residue given by the former relation. Obviously, there are an even

number of these, half with positive real part and half with negative real part. They

are responsible for the quasiparticles observed in the spectral function, as will be

clarified later. On the other hand, when n = m we find purely imaginary modes

with the corresponding residue matrix being purely imaginary. Some of the modes

may satisfy the limit

lim
q→0

ωn(q)→ 0 .

These are the only modes that survive at long wavelenghts and long times, therefore

we call them “hydrodynamic modes”. From them one can extract all the relevant

information about the hydrodynamic properties of the system. It may be that two

modes of one of the classes stated can recombine, becoming two modes of the other

class. When this happens, both modes must have zero real part and their residues

must also be purely imaginary.

Former studies of the residues [12, 20] by fitting the spectral function resonances

to a Breit-Wigner function did not take into consideration the possibility of a complex

residue. The complex residue acts by introducing a phase in the quasinormal mode

that shifts the position of the maximum of the spectral function in the real ω-axis

with respect to the position Ωn of the pole.

2.5 Adapting the prescription to numerical solutions

Except for some simple cases one does not expect to find an analytic solution to the

N coupled equations (2.6), and therefore it is not possible to extract the solution

matrix F (k, z) analytically. It follows that we are forced to give a prescription to

calculate this matrix from numerical results. At the level of fluctuations, we work

with a bilinear action, and hence equations of motion are linear and second order.

Hence, on general grounds, we expect to find a basis of 2N solutions. To obtain

any of these solutions we must supply boundary data at a given point from which

9σi = ±1 is the charge under parity reversal of the operator Oi. See appendix A for details.
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integration starts. Whenever a black hole is present in the geometry, the event

horizon is the convenient position at which to impose boundary conditions. This is

so because automatically we can halve the number of basis solutions by demanding

“in-going” boundary conditions at this point, which is what leads ultimately to the

computation of a retarded Green’s function [2].

Having fixed N boundary conditions, the other N correspond to normalizations

of the fields. We can select among N independent N -tuples that can be chosen to

be

ΦI
(a) = (z − zh)−

iw
2

(
eI(a) +O(z − zH)

)
, (2.28)

where w ∝ ω/T is a dimensionless frequency, weighted by the Hawking temperature

of the black hole10. The N linearily independent vectors e(a) can be chosen to be

eI(1) = (1, · · · , 1) , (2.29a)

eI(a) = (1, · · · , −1︸︷︷︸
ath

, · · · , 1), a = {2, · · · , N} . (2.29b)

Therefore, we have given N sets of independent boundary conditions at the horizon.

We can perform a numerical integration for each set and obtain N independent

solutions that extend in the range z ∈ (zΛ, zh). Let us call these, the IR-normalized

solutions, and arrange them in a matrix, H(k, z), in such a way that the J th solution

(Φ1
(J),Φ

2
(J), ...,Φ

N
(J)) appears as the J th column, i.e.

HI
J(k, z) = ΦI

(J)(k, z) . (2.30)

Any “in-going” solution, can be written as a linear combination of these N indepen-

dent solutions. In particular the matrix F (k, z) of UV-normalized solutions must be

linearily related to H(k, z). Since at the UV cutoff, by definition, F (k, zΛ) = 1, the

linear relation must be11

F (k, z) = H(k, z) ·H(k, zΛ)−1 . (2.31)

In general we will take the limit zΛ → 0 to evaluate the expressions at the boundary.

As stated before, the Green’s function is given by (up to regularizing counterterms)

GR(k) = − lim
zΛ→0

F(k, zΛ) = − lim
zΛ→0

(
2AH(k, zΛ)F ′(k, zΛ) +B†(k, zΛ)

)
, (2.32)

10For example, in the quenched D3/D7 system we are going to study in later sections, w = ω
2πT .

11The case of N uncoupled fields is automatically included. In this case, the matrix F is by
construction diagonal for all z, and takes values

F IJ = diag
[
Φ1(z)/Φ1(zΛ), · · · ,ΦN (z)/ΦN (zΛ)

]
.
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where we have taken into account the UV normalization of the matrix F (k, zΛ). Now,

after having made sure that the behaviour close to the boundary (zΛ → 0) is

HI
J(k, z → 0) ∼ A(k)IJ + z∆I

+−∆I
−B(k)IJ + ... , (2.33)

with A(k) and B(k) the connection coefficient matrices, we can insert this into (2.31)

and (2.32) and get12

GR(k)IJ = − lim
zΛ→0

[
2(∆I

+ −∆I
−)z

∆I
+−∆I

−−1

Λ

(
AH(k, zΛ)B(k)A(k)−1

)
+B†(k, zΛ)

]I
J .

(2.34)

Note that the non-analytic (in k) behaviour comes from the AIJ terms in the action.

The BIJ terms will give analytic contributions to the Green’s function.

Moreover, notice that GR(k) is ill-defined whenever detA(k) = 0. From equa-

tion (2.33) we see that the Green’s function has poles whenever the inverse matrix

H(k, zΛ)−1 does not exist, which is consistent with the discussion in section 2.4 by

equation (2.31). Under the present construction, this is equivalent to demanding

that the determinant of H vanishes at the cutoff

det[H(kn, zΛ)] = 0 , (2.35)

which is a very convenient operational statement for determining the position of the

quasinormal modes in the complex frequency plane numerically. With it, one can

track the position of quasinormal modes whose effect cannot be observed (or even

guessed) in the spectral function due to their being too far down into the imaginary-ω

axis, or the associated residue’s value being small.

3. Example application: D3/D7 probe fluctuations at finite

baryon density

For completeness, in this section we describe a system consisting of a set of Nf

probe D7-branes in the background of a stack of Nc non-extremal D3-branes with

Nf � Nc. Our notations and conventions will be as in [13]. We will apply the

formalism developed in the previous section to compute the quasinormal modes and

spectral functions in section 4.

3.1 Background

In the framework of the AdS/CFT correspondence, the retarded correlators we are

interested in, GR(k), can be obtained from the perturbations of a U(1) gauge field

12The reader will recognize here the generalization of the GR ∼ B/A rule of thumb put forward
in [21].
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dual to the electromagnetic current on the boundary. The relevant holographic de-

scription is provided by an AdS geometry with a non-extremal horizon and embed-

ded probe branes. The baryonic U(1) symmetry is the abelian center of the natural

U(Nf ) global symmetry present on a stack of Nf coincident D7-branes. For the case

of interest here, namely D3/D7 configurations, the dynamics of this gauge field is

encoded in the action for the probe Dq-brane

S = −NfTD7

∫
d8ξ
√
− det(g + 2πα′F ) + SWZ . (3.1)

The second term on the r.h.s. stands for the Wess-Zumino term which will not

contribute to the equations of motion for the background or the fluctuations. TD7 =

1/((2πls)
7gsls) is the D7-brane tension, gs is the string coupling constant and g is

the pullback metric induced by the relevant background. As for the background, we

will be dealing with the near horizon limit of a stack of non-extremal D3-branes

ds2 = H−1/2(−fdt2 + dx2
3) +H1/2

(
dρ2

f
+ ρ2dΩ2

5

)
, (3.2a)

where x3 = (x1, x2, x3) and

H(ρ) =

(
L

ρ

)4

; f(ρ) = 1−
(
ρ0

ρ

)4

. (3.3)

L4 = 4πgsNcl
4
s and the Hawking temperature is given by

T =
1

πL

(ρ0

L

)
. (3.4)

The D3/D7 intersection is summarized in the following array

0 1 2 3 4 5 6 7 8 9

D3 : × × × ×
D7 : × × × × × × × ×

where the probe D7-branes wrap a 3−sphere in the directions transverse to the

D3-branes, so it is convenient to write the metric of S5 in adapted coordinates,

dΩ2
5 = dθ2 + sin2 θ dΩ2

3 + cos2 θ dφ2 . (3.5)

Setting ψ = cos θ the classical Dq-brane embedding may be specified by a dependence

ψ = ψ(ρ). For numerical analysis we have changed to a new dimensionless radial

coordinate u related to ρ by

u =

(
ρ0

ρ

)2

. (3.6)
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In terms of this, f(u) = 1 − u2, the horizon (boundary) lies at u = 1 (u = 0) and

H(u) = u2

(πTL)4 . Specifiying the D7-brane embedding through ψ = ψ(u) the induced

metric takes the form

ds2
D7 =

(πTL)2

u
(−fdt2 + dx2

3) +
L2(1− ψ2 + 4u2fψ′2)

4u2f(1− ψ2)
du2 + L2(1− ψ2)dΩ2

3 . (3.7)

The generalization of the previous setup for finite baryon density was investigated in

[9, 10]. The relevant bulk degree of freedom dual to the baryon chemical potential is

the A0 component of a U(1) gauge field on the world-volume of the D7-brane. The

background profiles for ψ(u) and A0(u) are obtained by solving the Euler-Lagrange

equations of the Born-Infeld lagrangian in (3.1). The gauge field A0(u) obeys a

conservation equation owing to the fact that it enters the action purely through its

derivatives, so its solution can be expressed in terms of a constant of integration d̃

as follows

A′0(u) = −d̃ L
2T

4α′

√
ψ̃2 + 4u2fψ′2√
ψ̃2(ψ̃6 + d̃2u3)

, (3.8)

where ψ̃ =
√

1− ψ2. This constant of integration is related to the electric displace-

ment nq by

nq =
NcNf

8α′
L4T 3d̃ . (3.9)

If one wants to integrate this expression further, the correct condition to impose

by regularity is that the gauge field at the horizon vanishes. With this regularity

condition the quantity µ ≡ A0(0) is holographically identified with the chemical

potential [22]. We see that in the limit of vanishing baryon density d̃→ 0 we obtain

vanishing chemical potential (although there is a region of the phase diagram for

which this does not hold for sufficiently large quark mass [10, 23]).

The equation for ψ(u) gives

∂u

 4fψ̃2ψ′
√
ψ̃6 + d̃2u3

u
√
ψ̃6(ψ̃2 + 4u2fψ′2)

+
ψ
(

3ψ̃4 + 4u2fψ′2(2ψ̃6 − d̃2u3)
)

u3

√
ψ̃6(ψ̃6 + d̃2u3)(ψ̃2 + 4u2fψ′2)

= 0 , (3.10)

and cannot be solved analytically. Close to the boundary this equation reads ∂u (4ψ′/u) =

−3ψ/u3 and its solution behaves as

ψ(u) ' m√
2
u1/2 +

c

2
√

2
u3/2 +O(u5/2) , (3.11)

whereas close to the horizon13

ψ(u) ' ψ0 −
3

8

ψ0(1− ψ2
0)3

(1− ψ2
0)3 + d̃2

(1− u) +O(1− u)2 . (3.12)

13In the presence of a non-zero baryon density all the embedding profiles of the D7-branes reach
the horizon [10].
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The series near the horizon depends only on one parameter ψ0 ∈ [0, 1) and can

be used to integrate numerically towards the boundary. Once this integration is done

we can read off the asymptotic behaviour and extract the boundary quantities m(ψ0)

and c(ψ0) from equation (3.11). These constants m and c parametrize respectively

the quark mass and something we loosely refer to as the quark condensate [6, 24, 25,

26, 27],

Mq =
1

2

√
λTm , 〈O〉 = −1

8

√
λNfNcT

3c , (3.13)

with λ = g2
YMNc = 2πgsNc, the ’t Hooft coupling. The operator O is a supersym-

metric version of the quark bilinear

O = Ψ̄Ψ + Φ†XΦ +MqΦ
†Φ , (3.14)

with X one of the adjoint scalars. A precise definition can be found in [10]. The

3-area of the induced horizon (per unit 3-dimensional Minkowski space volume) is

controlled by ψ0

AH = 2π2(πTL2)3(1− ψ2
0)3/2 . (3.15)

We expect this quantity to govern the rough shape of the peaks of the spectral

function with larger widths for larger induced horizons. We are going to refer to this

quantity several times in section 4, so we find it convenient to plot it in figure 1.

3.2 Fluctuations

We will consider perturbations of the world-volume fields that depend only on the

RG flow coordinate u and the Minkowski coordinates x0, x1, thus not considering

any dependence on the internal coordinates wrapping the S3.

ψ(u, x) → ψ(u) + ε e−i(ωx
0−qx1)Ψ(u) , (3.16a)

Aµ(u, x) → Aµ(u) + ε e−i(ωx
0−qx1)Aµ(u) . (3.16b)

With this we can expand the DBI lagrangian in powers of ε

L = L0 + εL1 + ε2L2 + · · · . (3.17)

Upon imposing the equations of motion for the background fields, L1 vanishes and

the linearized equations for the perturbations can be derived from the quadratic

piece.

The fields A0,A1 and Ψ form a coupled system of differential equations. At first

sight this seems somewhat surprising since the scalar field is uncharged under the

corresponding U(1) gauge symmetry. We must remember however that in the case of

a non-trivial gauge field background we are really dealing with charged flavor probe

branes and that Ψ parametrizes the deformations of the flavor branes around its
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Figure 1: Normalized induced horizon area on the D7-branes as a function of the quark
mass and the baryon density. Red lines mark regions of equal induced area with the corre-
sponding value of ψ0 specified. For d̃ ≤ 0.00315 the curve is multivalued close to m = 1.3,
signaling a first order phase transition. Furthermore, it was recently shown in [30] that
an unstable quasinormal mode with positive imaginary part of the frequency exists in that
region. We will however not consider it in the current paper.

equilibrium configuration. Thus, if we deform the probe branes the charge distribu-

tion on them will also experience induced forces since now it is not in equilibrium.

Therefore, scalar field fluctuations, Ψ, necessarily will also induce fluctuations in the

charge density. We might think of the the scalar field as carrying multipole charges

with respect to the gauge field. Indeed, upon expansion of the DBI action, couplings

of the scalar field to the field strength tensor do appear. They are caused by multipole

moments of the charge distribution and vanish therefore at zero momentum. Since

the scalar does not carry monopole charge it is still possible to rewrite the equations

of motion using a single propagating gauge invariant combination EL where

EL = qA0 + ωA1 (3.18)

is the longitudinal (parallel to the fluctuation) electric field. There are no couplings to

the transverse fields ET = ωA2,3. The equations of motion can be found in appendix

D.

The definition of quasinormal modes as the zeroes of a determinant spanned by

the field values at the boundary has been used before in [14, 28]. As explained there,

it is also possible to avoid the introduction of gauge invariant fields and work directly
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with the gauge fields. In such a case pure gauge configurations need to be taken into

account in order to obtain a maximal set of linearly independent solutions. In the

case at hand it is however easier to work with the gauge invariant electric field (3.18).

In order to solve the coupled equations of motion we must setup the boundary

conditions for the coupled system. The lore is that for retarded Green’s functions

we must select incoming wave boundary conditions on the black hole horizon. The

generalization of the usual Frobenius expansion near the horizon is straightforward at

first order, and in our case gives the usual regularizing factors Φ(u)→ f(u)−i
ω

4πT Φ(u).

Now the regular coupled system of equations can be numerically integrated from the

horizon towards the boundary to obtain the Fourier bulk modes Ψk(u) and EL,k(u)

with k = (ω, q, 0, 0).

3.3 Green’s function from fluctuations

As mentioned before, in principle we are perturbing the gauge fields Aµ and the

scalar field Ψ. However, gauge symmetry and the fact that we only have rotational

invariance in the thermal vacuum implies that the relevant fields are the gauge in-

variant combinations EL = qA0 + ωA1, ET = ωAi (i = 2, 3) and Ψ. At this stage we

must write the boundary action in terms of the Ψk(u) and EL,k(u), ET,k(u) degrees

of freedom. The neatest strategy is to write the bulk bilinear action in the form

given in equation (2.11). Hence we must proceed by writing the Fourier transformed

action in the form (2.7) and extracting from it the explicit values of AIJ and BIJ .

Details can be found in appendix C.

From the form of the boundary action we expect a structure of retarded corre-

lators given in terms of these fields as follows

GR(ET , EL,Ψ) =

〈ÊT ÊT 〉 0 0

0 〈ÊLÊL〉 〈ÊLΨ̂〉
0 〈Ψ̂ÊL〉 〈Ψ̂Ψ̂〉

 . (3.19)

From this matrix, it is straightforward to obtain the correlators for gauge fields. In

fact, defining the polarizations

GR(ET , EL,Ψ) ≡



ΠT (k)

ω2
0 0

0
ΠL(k)

ω2 − q2

ΠLΨ(k)√
ω2 − q2

0
ΠΨL(k)√
ω2 − q2

ΠΨΨ(k)

 , (3.20)

all the relevant information is contained in this set of functions. At q = 0 rotational

invariance is restored, implying ΠL(ω, 0) = ΠT (ω, 0) and ΠLΨ(ω, 0) = 0. Also from

the requirement that the Green’s function is regular on the light cone we must find
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for k2 = 0 that ΠL(k) = ΠLΨ(k) = 0. The usual correlators for conserved currents

are obtained from here through the introduction of the relevant kinematical factors,

which are found by using the chain rule

CAA
µν ≡ 〈ÂµÂν〉 =

δEi
δAµ

δEj
δAν
〈ÊiÊj〉 = P T

µν ΠT (k) + PL
µν ΠL(k) , (3.21)

where i, j = T, L and the transverse and the longitudinal projectors are defined in

the standard way (see [15] for example) For kµ = (ω, q, 0, 0) this leads to the only

non-vanishing components

CAA
xixi = ΠT (ω, q) , i = {2, 3} , (3.22)

CAA
tt =

q2

ω2 − q2
ΠL(ω, q) , CAA

tx1 =
−qω
ω2 − q2

ΠL(ω, q) , CAA
x1x1 =

ω2

ω2 − q2
ΠL(ω, q) ,

and for the Green’s function

CAΨ
µ = 〈ÂµΨ̂〉 =

δEi
δAµ
〈ÊiΨ̂〉 ,

again with i = T, L we obtain from (3.19) and (3.20)

CAΨ
t =

−q√
ω2 − q2

ΠLΨ , CAΨ
x1 =

ω√
ω2 − q2

ΠLΨ . (3.23)

3.4 Conserved current

For the D3/D7 system we can evaluate the Noether current at the horizon, reading

the matrix expressions given in appendix C. We can use the IR-normalized matrix of

solutions, H(k, u), to perform the derivatives and then evaluate them at the horizon.

The holographic information of the system enters through the factors of H−1(k, 0) in

the definition of the UV-normalized matrix of solutions, F (k, u), which are the ones

entering naturally in the definition (2.22).

The AH(k, u) matrix can be shown to behave near the horizon as O(1−u) in the

diagonal terms and O(1−u)2 in the off-diagonal ones. The B†(k, u) matrix has a null

diagonal and the off-diagonal terms behave like O(1− u). Therefore, the evaluation

of the matrix of Noether currents gives

J(k) = lim
u→1

(2πTω)σDC F (k, u)†


1

(2πTω)2
0

0 4
(πTL2)4

1− ψ2
0

F (k, u)

 , (3.24)

where σDC ≡
√

(1− ψ2
0)

3
+ d̃2 is the DC conductivity of the system.
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As stated above, this quantity is identified with the spectral function of the

system. It is straightforward to show from the former expression that the diagonal

entries of ω ρ̃ij(ω) are positive.

Numerically we have checked that the antihermitian part of the flux F(k, z)

is independent of the radial variable in the parameter region where numerics are

to be trusted, in full agreement with equation (2.19). We also checked that the 4

independent components of this antihermitian matrix are given by expression (3.24).

3.5 Regularized action

The counterterms needed to regularize the D3/D7 quenched system were obtained

in [29] and can be expressed as∫
d4xSct = −

∫
d4x

L4

4

√
g(4)(1− ψ2)2 , (3.25)

where g(4) is the euclidianized boundary metric and ψ is the embedding profile. When

one perturbs this profile by considering

ψ(u)→ ψ(u) + ε e−i(ωx
0−qx1)

√
u Ψ̄(u) , (3.26)

where the normalization factor
√
u has been taken into consideration (see appendix

C), then the counterterm action can be expanded in powers of ε, which effectively

marks the number of perturbation fields14. At second order the counterterm enters

the definition of our boundary action, which is now defined as

S =

∫
dk̃>

(
2ĀHIJΦ̄I

−kΦ̄
′J
k + B̄†IJΦ̄I

−kΦ̄
J
k − 2Sct,2Ψ̄−kΨ̄k

)
, (3.27)

where Ψ̄k ≡ Φ̄I=2
k goes to a constant at the boundary. It is easy to check from

equations (C.3) that the ĀH matrix is regular at the boundary, whereas the B̄†

matrix reads

B̄†(u→ 0) =

0 0

0
(πTL2)4

u

 +O(1) (3.28)

Close to the boundary the counterterm quadratic in the fluctuations gives

Sct,2(u→ 0) =
(πTL2)4

2u
+O(1) (3.29)

so the contribution to the boundary action is

B̄† → B̄† − 2

0 0

0
(πTL2)4

2u

+O(1) = B̄†regular , (3.30)

14In this subsection we recover the barred notation of section 2.1.

– 19 –



and the Green’s function is divergence-free with the usual counterterms. It is worth

noting that the added counterterms affect only the hermitian part of the flux matrix,

because they enter through the real part of a diagonal component, this means that the

spectral function for this system is insensitive to the presence of these counterterms,

as is the position of the quasinormal modes. This is consistent with the fact that the

spectral function is u-independent.

4. Analysis and discussion

4.1 The mixing mechanism

There are three independent limits in which one can find that the system considered

in the previous section decouples, these are the massless quark limit m→ 0, the null

momentum15 limit q → 0 and the zero baryon density limit d̃ → 0. When none of

these limits is taken we have to face the presence of coupled fields. A question arises

naturally, how does the mixing appear from the point of view of the quasinormal

modes?

One convenient way to find an answer to this question is consider first the decou-

pled case. Taking one of the decoupling limits one can study either the longitudinal

electric field sector or the scalar sector without considering the other. Then, numer-

ically one can find the quasinormal modes. This was done in [30]. It was observed

that the quasinormal modes of both channels do not coincide at finite temperature.

Returning to the coupled case (for example, evolving the parameters slowly from

a decoupling limit), the system becomes coupled and we cannot talk anymore about

poles associated to the longitudinal vector sector or to the scalar sector. The poles

are collective properties of the system. Despite this, one would like to understand

how these collective modes can be categorized in the decoupling limits and identified

with one of the two channels under consideration.

In figure 2 we compare the finite temperature contribution of the longitudinal

electric field component of the spectral function

NfNcT
2

4(w2 − q2)
ρ∆(w) = i

[
GR(w)−GR†(w)

]1
1 −

NfNcT
2

4
2πΘ(w2 − q2) , (4.1)

with the position of the quasinormal modes of the system for the same parameter

values.

We see that when we deal with the coupled system the poles appear in prox-

imate pairs with similar values Ωn. One can calculate for each of these modes its

corresponding matrix of residues. Taking one of the parameters (m, q or d̃) to evolve

towards the decoupling limit and studying how these matrices of residues change, we

15Throughout this section we will work with the dimensionless momentum (w, q) = (ω,q)
2πT .
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Figure 2: Example of the position of the quasinormal modes with positive real part (red
points, scale in negative axis) and the corresponding finite temperature contribution to the
component of the spectral function associated with the longitudinal electric field propagator
(continuous line, scale in positive axis). Notice that in figure (a) only half of the poles seem
to contribute to the spectral function, this is because the other half have a small residue.
In figure (b) we plot a detailed version of a spectral function where all the poles have an
observable contribution. These plots are for m = 0.01, d̃ = 2 and q = 0.2 and q = 2.2
respectively.

observe that in the case where the parameter is small (this is, when the system is

weakly coupled) the matrices of residues for the proximate pairs of modes tend to

R1 =

(
R1 0

0 0

)
, R2 =

(
0 0

0 R2

)
, (4.2)

which is exactly what one expects to find if the system were decoupled.
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This implies that in the decoupling limit we can state that the quasinormal

modes decouple by means of the matrix of residues, and one can then associate each

of these poles either to the longitudinal vector channel or the scalar channel. With

this interpretation we are able to recover former results found in the cited literature.

When we are close in the parameter space to the region where the coupling is small,

the shape of the spectral function resembles closely the spectral function of the

decoupled cases (see figure 2(a)). However, once we further probe the parameter

space, the magnitudes of the residues associated to the proximate pairs of poles

become similar to each other, and thus the peaks of the spectral functions contain

a more complicated structure, i.e., each peak in the spectral function has a deeper

structure given by the contribution of two poles16 (see figure 2(b)), one of which can

be linked to the scalar channel in a decoupling limit, and the other to the longitudinal

vector channel.

Yet another way to see how the mixing appears in the system is to focus on

expression (3.24) for the spectral function. In a decoupling limit the matrix F (k, u)

is diagonal, thus giving a diagonal spectral function, each term of the diagonal corre-

sponding to each of the uncoupled channels. Correspondingly, we have two indepen-

dent Green’s functions. The matrix F (k, u) is sensitive to the bulk of the holographic

geometry, and when the system departs from the uncoupled case, this matrix will

notice the mixing in the bulk of the two fields, and will no longer be diagonal. This

means that the spectral function is now given by a 2× 2 matrix, and the same holds

for the Green’s function of the system.

4.2 Field theory interpretation

In order to elucidate the connection between field theory effects and holographic

mixing, we discuss the significance of mixing fields in the bulk from the boundary

field theory point of view.

Renormalization Field coupling in the bulk means that a single field ΦI
k(z) sources

a linear combination of all operators at the cut-off zΛ. Any field ΦI
k may be expressed

through the bulk to boundary propagator F J
I and the boundary data ϕIk as seen from

equation (2.9a). Hence the bulk to boundary propagator F J
I describes the behavior

of an operator OI under the RG-flow along the radial coordinate z, i.e. the operator

renormalization Orenormalized
a = ZbaObare

b . This is in analogy to the renormalization of

fields in ordinary quantum field theory, where we have ψrenormalized = Zψbare.

Furthermore, the coupling of the gravity fields ΦI
k introduces renormalization

corrections from all operators to the two-point functions. That means that a single

operator Green’s function 〈[OI ,OI ]〉 with a fixed I is in general renormalized through

16In reality each peak has contributions coming from all the quasinormal modes, but these con-
tributions die away as (ω − Ωn)−2.
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contributions of all operators. This is in analogy to the loop corrections describing

renormalization in ordinary interacting quantum field theory. Inside these diagrams

all particles (with appropriate interaction vertices) of the theory may appear, just like

in our case all the operators may appear. However, in contrast to ordinary quantum

field theory here we do not have to compute higher loop orders in order to get the

full action of the renormalization group. Due to the gauge/gravity correspondence

the exactly renormalized field theory result is (in our semi-classical approximation)

already encoded in the leading order gravity solutions. So this effect is an exam-

ple of how quantum effects such as renormalization of a quantum field theory are

holographically encoded in the dynamics of a purely classical bulk theory17.

4.3 Hydrodynamic regime

The vector field on the brane corresponds to a global U(1) symmetry in the dual field

theory. At finite temperature the global symmetry has to give rise to a hydrody-

namic mode since a conserved charge can not be dissipated away but diffuses slowly

through the medium. In other words we expect to find a quasinormal mode with

a hydrodynamic dispersion relation such that lim
q→0

ω(q) = 0. Furthermore for small

momenta the dispersion relation has to take the form of a diffusion kernel ω = −iDq2

where the diffusion constant now depends on the ratio of quark mass to temperature

and the baryon density d̃.

Upon increasing momentum, higher powers appear in the disperion relation giv-

ing rise to higher order hydrodynamics. If we increase the momentum still further,

we expect however a crossover from diffusive regime to a reactive regime18. More

precisely we expect the hydrodynamic diffusion to show up as a purely exponential

decay in time where as at smaller wavelengths we expect to find a slowly decaying

oscillating behavior. In the holographic context this crossover has first been dis-

cussed in [32] by studying spectral functions. This crossover can however also and

more directly be addressed in terms of the quasinormal modes. It has been observed

in [33, 34] that for the longitudinal R-charge current and the shear channel in the

AdS5 black hole background, that there exists a certain critical momentum value

from which it is not anymore the purely imaginary diffusion mode that dominates

the long time behaviour of the system. More precisely, from that value of the mo-

mentum on, the imaginary part of the first non-gapped quasinormal mode is closer

17Note that in the case of the dilepton production rates only the diagonal current-current corre-
lator contributes, since it is only the current that couples to the intermediate off-shell photon that
decays into the dilepton in the final state [31]. This is true even in our case where the longitu-
dinal current components mix with the scalar. Nevertheless, the scalar contributes virtually since
the scalar fluctuations are necessarily switched on in the bulk and the scalar quasinormal modes
influence the shape of the current spectral function if the mixing is large enough.

18In the literature this is sometimes also called a hydrodynamics to ”collisionless” or ”quasipar-
ticle” crossover.
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to the real axes than the diffusive mode. In terms of time devolopment this shows

up as a change from a purely damped decay to a slowly decaying oscillation since

the first gapped mode also has a non-vanishing real part of its frequency. In [30] it

was shown that this behaviour also holds for the longitudinal sector of the vector

field on the D7-brane at finite quark mass. Moreover, the change in behaviour in the

time domain has been explicitely verified recently in [35]. We can therefore identify

the value of the momentum where the purely imaginary diffusion mode crosses the

imaginary part of the non-hydrodynamic mode, moving from the diffusive to the

reactive regime.

We would like to investigate how this crossover takes place in the case with non-

vanishing gauge field on the D7-brane. Naively one might expect that nothing new

would happen compared to the case without baryon charge. However, now we have

to take into account the mixing of the longitudinal vector channel with the scalar one.

An important feature of the scalar sector quasinormal mode spectrum is the existence

of purely imaginary poles, as has been shown in [30]. For vanishing or small densities

these modes are responsible for the appearance of a tachyonic instability at low

temperature to mass ratios. There exists a rather small critical density d̃ = 0.00315

above which the system becomes stable. If we switch on momentum we know that

the scalar channel and the longitudinal vector channel mix. If there are now two

neighbouring purely imaginary quasinormal modes in the spectrum, it may happen

that they combine and move off the imaginary axis developing non-vanishing real

parts. In fact, this is the way the crossover from the hydrodynamic regime happens

in AdS4 [36] and on probe D5-branes corresponding to defects in the CFT [20].

In figure 3 we have plotted the dispersion relation for the relevant modes at a

fixed quark mass m = 1 but for different baryon densities. The left plot (a) shows

the imaginary parts of two modes for a rather low density d̃ = 0.01. There is a purely

imaginary, hydrodynamic mode representing the diffusive behaviour of the baryon

charge. The other mode is gapped and has a real as well as an imaginary part. Only

the imaginary part is shown since this determines the decay time. As we can see,

there is a critical value of the momentum at around q = 0.8257 where the diffusive

mode crosses the non-hydrodynamic mode. From that value on the response of the

system is dominated by the first non-hydrodynamic mode and we may say that it

has entered the reactive regime. No other mode is visible at this small density in this

region of frequency and momentum space. This is qualitatively the same behaviour

as in the zero density case [30]. At larger momenta the purely imaginary diffusion

mode might pair up with another purely imaginary mode. For the crossover to the

quasiparticle regime this is however not relevant, since the long time behavior is

already dominated by the lowest quasinormal mode shown in 3(a).

The middle figure 3(b) shows the situation at a higher density of d̃ = 0.545.

Now we see three modes. There is the diffusive mode, the first gapped quasinormal
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Figure 3: Crossover from the diffusive to the reactive regime in terms of quasinormal
modes. Two different mechanisms of how this crossover happens can be seen. At small den-
sity (a) the hydrodynamic mode crosses the imaginary part of the lowest non-hydrodynamic
mode. At large density (c) the hydrodynamic mode pairs up with another purely imaginary
mode and moves off the imaginary axes as a pair with non-vanishing real frequencies. In
between (b) the three imaginary parts of the modes meet at a single value of momentum.

mode that also has a real part (plotted as a dashed line) and there is now a second

purely imaginary mode. As we increase the momentum all three lines meet in a

single point at q = 0.73 and for larger momentum only two lines are visible. This

corresponds to the fact that the two purely imaginary modes have combined into

a pair of quasinormal modes with non-vanishing real parts. We can identify the

momentum where all three lines meet at the point where the crossover from the

hydrodynamic to the quasiparticle regime takes place.

The lower figure 3(c) shows the same modes now for a rather high density d̃ = 2.

Now the two purely imaginary modes combine first into a pair of quasinormal modes

with non-zero real part . We can identify the crossover now with the momentum

at which this pairing of the purely imaginary modes takes place. In figure 3(c) this

takes place at q = 0.35.

From the the dispersion relation we can also compute numerically the diffusion
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constant D as a function of density and temperature. This problem has been ad-

dressed before and in [37] a general formula in terms of the background fields has been

derived. Our numerical results for the diffusion constant are in very good agreement

with this formula

D =
σDC
χ

=

√
−γ
√
−γ00γzzγii

∣∣∣
zH∫∞

zH

1√
−γγ00γzz

(
1 + nq

(
∆ ∂ψ′

∂nq
+ Ξ ∂ψ

∂nq

))−1

dz
, (4.3)

with σDC the DC conductivity, χ the susceptibility and ∆, Ξ and γ defined in ap-

pendix D.

4.4 Quasiparticle regime

In this section we will focus on the regime where peaks on the spectral function

can be clearly identified, corresponding to quasinormal modes with finite Ωn. We

will identify these peaks with quasiparticles. The different criteria existing in the

literature to define a quasiparticle generally relate the imaginary part of the quasi-

normal modes (Γn, responsible of the width of the quasiparticle peaks) and energy

(Ωn related to the positions at which the peaks are centered), giving a condition of

the form
∣∣∣ Γn

Ωn

∣∣∣ � 1. Taking the T → 0 limit, these peaks can be seen to coincide

with the supersymmetric mesonic spectrum (see for example [11] for the study of the

transverse mode in the D3/D7 system).

M2
n = 2π2M̄2 n (n+ 1), n ≥ 1 , (4.4)

with M̄ the mass scale of the system.

The quasinormal mode point of view turns out to be useful for understanding

the qualitative behaviour of the spectral function in the quasiparticle regime under

variation of the different parameters. We will give here some heuristic reasoning

about these variations and compare it with numerical results obtained following the

procedure described above. We will also link the behaviour of the quasinormal modes

with the geometry of the D3/D7 system by means of the induced horizon on the

probe branes.

From figure 1 we can guess in what region of the parameter space the quasipar-

ticle interpretation is appropriate. Large narrow peaks in the spectral function are

associated with embeddings resembling Minkowski-like ones everywhere but in the

region close to ψ = 1, where a narrow throat, consisting of a bundle of fundamental

F1-strings pulling the brane into the horizon, is formed [10]. This narrow throat

implies that the induced horizon on the probe brane has a very small area, corre-

sponding to the flat region on the right of figure 1. From equation (3.15), we see that

the quasiparticle regime is that of ψ0 ≈ 1. In physical parameters this means that
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the quark mass over temperature has to be high (and higher the larger the baryon

density is).

In the quasiparticle regime we expect equation (4.4) to roughly describe where

the centers of the peaks of the spectral function should be. In this case one can

identify the mass scale M̄ with the mass of the constituent quarks by M̄ = mT .

Defining the mass of the (now melted) mesons using the dispersion relation of the

quasinormal modes M2
n ≡ ω2

n − q2 ∝ T 2 we observe that, when M̄ increases, ωn has

to increase correspondingly.
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Figure 4: Position of the quasinormal modes with positive real part as we vary m for
fixed d̃ = 0.01 and q = 0.01. The massless quark limit corresponds to the lower points on
the graphs and we evolve up to m = 2.01. We see that when the quark mass is increased the
pole gets closer to the real axis hardly changing the value of Ωn. From a given value of the
quark mass it changes completely the behaviour, approaching the real axis asymptotically in
Ωn. The very large frequency limit can be read as a T → 0 limit, therefore the poles should
sit exactly on the real axis. The poles for different values of the parameters evolve in the
same qualitative way.

One expects that in the quasiparticle regime this qualitative behavior still re-

mains valid, possibly with a slightly modified rate of change. This would mean that

in the spectral function the peaks are shifted to larger values of the frequency, so the

energy of the quasinormal modes, Ωn, grows with increasing values of the parame-

ter m = M̄/T . This is what we find numerically, as shown in figure 4 for a single

pole. Notice also that an increasing value of M̄/T corresponds to a closer agreement

with the quasiparticle condition
∣∣∣ Γn

Ωn

∣∣∣ � 1 (see figure 1). This also supports the

description given above in terms of the induced horizon, where at fixed T increasing

the mass of the quarks M̄ meant a smaller induced horizon, that is, the embedding

of the probe branes resembles closely that of a meson in the non-deconfined phase

when T/M̄ → 0. It should be noted that the low momentum modes which have

– 27 –



support over a large region of the D7-brane will see little effect from the narrow

throat. Large spacetime momentum modes are concentrated around ψ = 1 and will

therefore notice the effects of the horizon even for small values of T/M̄ .

Another feature present in figure 4 is that, once we leave the quasiparticle regime

of the theory, the position of the quasinormal modes evolve with the quark mass in a

completely contrary way. The energy Ωn associated to the quasinormal modes varies

slightly, whereas the damping factor −Γn is increased considerably.
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Figure 5: Position of the first eight quasinormal modes with positive real part as we
vary d̃ for fixed m = 2 and q = 3. The red points mark the values (beginning at the top)
d̃ = 0.01, 0.012, 0.026, 0.063, 0.135, 0.254, 0.432, 0.680, 1.01, 1.43, 1.96, 3.38, 5.37, 8.01,
11.4, 15.6. Between any two consecutive red points there are ten data points. When d̃ is
increased all the quasinormal modes begin to orbit a certain point, but this happens beyond
the quasiparticle regime, we have not investigated whether this is a numerical issue.

The next parameter under consideration is the baryon density d̃. When the probe

branes are charged the embeddings can be roughly described as being Minkowski-

like with a throat entering the black hole. This way of seeing the embedding is more

accurate the smaller d̃ is (being associated to a narrower throat). Having only black

hole embeddings, the mesons melt and we have a finite width for the peaks in the

spectral function, corresponding to a finite value of Γn. The peaks are broader the

larger the induced horizon is. That is, when d̃ is larger and the approximation of the

embedding to a Minkowski-like embedding is worse.

The conclusion is that the effect of increasing the baryon density on the quasinor-

mal modes is to increase the value of |Γn|, driving the system out of the quasiparticle

regime. This is what we observe in figure 5. From the point of view of the induced

– 28 –



horizon area (figure 1) it is clear that an increasing baryon density d̃ for a fixed value

of m will broaden the peaks of the spectral function.
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Figure 6: Position of some quasinormal modes with positive real part as we vary q for
fixed m = 2 and d̃ = 0.01. The red points correspond to q = 0.01− 10.01 in regular steps.
Between any two red points there are at least 10 data points.

Now we turn our attention to the behaviour with q. The squared meson mass

definition in equation (4.4) is M2
n = ω2

n − q2. Therefore we see that if we want to

keep M̄ fixed as q increases, again the value of the frequency has to grow, meaning

that Ωn approximately grows with q. This is what we see in figure 6.

As pointed out in [12], there is a maximum value of q at which the quasiparticle

condition ceases to hold. In the cited paper the authors identify this critical value

qcrit by studying the Schrödinger potential in the transverse vector channel. As an

increasing q enhances the value of the energy of the quasinormal modes Ωn following

the dispersion relation, it is expected that before reaching qcrit the value of the widths

Γn increases faster. In figure 7 we plot the continuation of figure 6 for higher values of

the momentum. There we see how the modes enter a region where Γn ∝ Ωn, driving

the system out of the quasiparticle regime (by diluting its effect on the spectral

function). The value of the momentum at which this happens is different for each

quasinormal mode.

4.5 Dispersion relations

Following the position of the quasinormal modes at large value of the momentum

a study of the dispersion relations can be performed, giving information about the

limiting velocity, vn, of the unstable quasiparticles associated to the modes. This is
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Figure 7: Position of the quasinormal modes for m = 2 and d̃ = 0.01. The red points
correspond to q = 10.01 − 20.01 in regular steps. Between any two red points there are at
least 10 data points.

done by fitting the real part of these modes to a mass hyperbola

Ω2
n = M2

n + v2
nq

2 . (4.5)

An example of this can be found in figure 8. There we follow the first four quasinormal

modes for m = 4 and d̃ = 0.5. These parameters give sharp peaks in the spectral

function, as can be guessed from figure 1. The numerical data can be fitted to a

mass hyperbola like the one given above, which turns out to be a good fit. The

dispersion relations in figure 8 correspond to the data shown. When q → 0 we can

read the value of the mass of the quasiparticle produced. This is a decoupling limit,

and one should expect that the quasinormal modes associated to the longitudinal

electric field should give the same masses as the ones obtained from the transverse

electric field, because of the recovery of rotational symmetry. This is indeed the case

for the modes with masses Mn = 4.02, 7.03 in the present example.

Notice that the results given seem to suggest superluminal velocities, but the

difference with the speed of light is so small that this effect cannot be differentiated

from numeric instabilities reliably. A complete study of these dispersion relations

would imply a great improvement of the numerical code, but this is beyond the

scope of this work.

4.6 Summary and conclusions

We have described how to extract dynamical information from a system of coupled

fields, which corresponds holographically to the description of operator mixing. This
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Figure 8: Dispersion relation (a) and damping factors (b) for the first quasinormal modes
as a function of momentum for m = 4 and d̃ = 0.5. The limiting velocities are compatible
with the speed of light.

generalizes the celebrated (and widely used) prescription of [2] in a way that agrees

with the causal structure of the retarded Green’s function and with the general spirit

of the AdS/CFT correspondence. We find that the matrix-valued Green’s function

for a coupled system is intimately related to the symmetries of the bilinear action

describing the fields and their mixings. Given a generic action, taking fluctuations

and linearizing the system gives rise to N2 U(1) global symmetries (with N the

number of coupled fluctuations), the Green’s function being given by the associated

Noether current.

As an example of the procedure we calculated numerically the quasinormal modes

of the D3/D7 system in the presence of finite baryon density, where a coupling be-

tween the longitudinal vector channel and the scalar channel appears. We described

from the quasinormal mode paradigm how the system goes from a regime where the

fields are independent to a regime where one has to consider the coupling between

the fields, and how this is reflected in the spectral function. Understanding this we

were able to calculate different physical properties, such as the diffusion constant

and dispersion relations.

It is also possible to see how the large time behaviour of the system makes a

crossover between a behaviour dominated by a hydrodynamic mode and a quasi-

particle mode. This transition is determined by a specific momentum qco(m, d̃) in

the theory. When q < qco(m, d̃) the large-time behaviour of the system is set by a

diffusive pole, whereas when q > qco(m, d̃) the large-time behaviour is described by

the quasiparticles associated to the quasinormal modes.

We were able to give a heuristic description of the behaviour of the spectral

functions (and generally of the Green’s function’s non-analytic part) in the quasi-
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particle regime, linking it to the behaviour of the quasinormal modes in this regime

of parameters. We also gave a geometric point of view, relating it to the induced

horizon of the flavor branes in the setup. It would be interesting to try to find phe-

nomenological expressions relating the behaviour of the quasinormal modes in the

quasiparticle regime and the induced horizon on the D7-branes, but we have not

investigated this here.

The study of dispersion relations and the behaviour of the system at high fre-

quency and momentum has still to be clarified. This matter has escaped the efforts

of several groups due to the numerical instabilities that generically appear when us-

ing numerical programmes with these range of parameters, ultimately related to the

rapid oscillations of the system.

We conclude stating that the general procedure introduced in this work is a very

useful tool to treat the AdS/CFT models that continue to become more intricate

as we simulate systems ever closer to the real world. In particular with the current

interest in AdS/CMT models where the study of systems with coupled degrees of

freedom is common such a procedure may help to understand a wealth of interesting

phenomena.
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A. General comments on the causal matrix Green’s functions

Consider the matrix-valued spectral function

ρij(x) = 〈[Oi(x),Oj(0)]〉 , (A.1)

which exhibits the following properties

ρ(x)† = ρ(−x) = −ρ(x)t . (A.2)
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Correspondingly, the Fourier transform ρ̃(k) =
∫
d4k e−ikxρ(x) also satisfies a set of

identities

ρ̃(k)† = ρ̃(k) = −ρ̃(−k)t . (A.3)

In particular this means that the diagonal components are real and antisymmetric

under k → −k. One may also be interested in the behaviour under ω → −ω. For

O(3) invariant theories the diagonal components will also be real and odd in ω

ρii(ω, |q|) = ρii(ω, |q|)∗ = −ρii(−ω, |q|) . (A.4)

For the off-diagonal components however, only if one also imposes time reversal or

parity symmetry can one prove that the off-diagonal entries must be either even or

odd functions of the frequency. In the present case time reversal symmetry is broken

by the presence of a finite baryon density. The parity operator acts as POi(t,x)P−1 =

σiOi(t,−x) with σi = ±1, hence

P [ρij(t,x)] = σiσjρij(t,−x) . (A.5)

Parity invariance implies ρij(t,x) = σiσjρij(t,−x), which for the Fourier transform

implies that

ρ̃ij(ω,q) = −σiσj ρ̃ij(−ω,q)∗ . (A.6)

So the off-diagonal entries are either odd or even functions of ω depending on the

signs σi. In the case where the fields transform in the same way under the parity

operator this means that the real (imaginary) part of the off-diagonal components is

an odd (even) function of the frequency.

From the spectral function, as defined in (A.1) we can define two causal propa-

gators, namely the retarded and advanced Green’s functions

GR(x) = −iΘ(t)ρ(x) , (A.7a)

GA(x) = iΘ(−t)ρ(x) , (A.7b)

where x = (t,x). Using (A.3), one can prove the following relation amongst the

Fourier transforms of these

G̃R(k) = G̃R(−k)∗ = G̃A(k)† . (A.8)

From here, we see that the real (imaginary) part, ReGR ( ImGR), is even (odd)

under k → −k. We can compute the Fourier transform of the retarded Green’s

function, which is given by the convolution of the Fourier transform of the Heaviside

step function Θ̃(ω) with the Fourier transform of the spectral function ρ̃(k),

G̃R(ω,q) = −i
∫ ∞
−∞

Θ̃(ω − µ)ρ̃(µ,q)
dµ

2π
. (A.9)

– 33 –



Using the Fourier transform of the step function

Θ̃(ω) =
i

ω + iε
,

and the Sokhatsky-Weierstrass theorem we get

G̃R(ω,q) = P
∫ ∞
−∞

ρ̃(ω′,q)

ω − ω′
dω′

2π
− i

2
ρ̃(ω,q) . (A.10)

From the hermiticity of ρ̃(k) we see that we can regard (A.10) as a split of G̃R(k)

into its hermitian and antihermitian parts, and find that the spectral function can

be computed from the antihermitian part of the Fourier transform of the retarded

Green’s function

ρ̃(k) = i[G̃R(k)− G̃R(k)†] ≡ 2iG̃
(A)
R (k) , (A.11)

where the (A) stands for antihermitian19. Plugging this back into (A.10) and taking

the hermitian part (H) on both sides we arrive at

G̃
(H)
R (ω) =

i

π
P
∫ ∞
−∞

G
(A)
R (ω′)

ω − ω′
dω′ , (A.12)

which is nothing but the Kramers-Krönig relation for the matrix Green’s function.

It is complemented by the conjugate relation interchanging the hermitian and anti-

hermitian parts. Under parity transformation the Green’s function satisfies

G̃R
ij(ω,q) = σiσjG̃

R
ij(−ω,q)∗ . (A.13)

B. Formula for the residue

Consider the adjugate matrix adj[H] defined by

H−1 = det[H]−1adj[H] . (B.1)

Note that adj[H] is finite at det[H] = 0. The relevant part of the Green’s function

is now

G = 2A ·
(
d

dr
H

)
· adj[H]

1

det[H]

∣∣∣∣∣
zΛ

, (B.2)

which makes manifest that the poles are given by det[H] = 0.

Close to a quasinormal mode, ωn = Ωn + iΓn, the determinant as a function of

the frequency can be approximated as

det[M(ω)] = (ω − ωn)
∂

∂ω
det[H] , (B.3)

19Using (A.8) we can always work with retarded Green’s functions GR.
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since by definition det[H(ωn)] = 0. Therefore the matrix of residues is given by

Rn = −2A ·
(
d

dz
H

)
· adj[H]

1
∂
∂ω

det[H]

∣∣∣∣∣
zΛ,ω=ωn

. (B.4)

In practice one also faces the question of how to compute numerically the holo-

morphic derivative ∂
∂ω

. The Cauchy-Riemann equations allow us to express the holo-

morphic derivative of det[H(ω)] numerically as

∂

∂ω
det[H] =

det[H(ωn + δ)]− det[H(ωn)]

δ
, (B.5)

for a conveniently small and real δ and where we have not taken det[H(ωqnm)] = 0

because it is numerically more stable.

C. Boundary action

Expanding the BI lagrangian (3.1) up to second order in fluctuations, and performing

a Fourier transformation on them as in (2.2) we may cast the result in the form

given in (2.5) for the gauge invariant fluctuations (EL
k (u),Ψk(u)) and ET

k (u) which

decouple. From here we can read off the coefficient matrices AIJ , BIJ and CIJ that

can be seen in (2.5). Notice however that with this lagrangian, the equations of

motion lead to an asymptotic expansion for Ψk(u) akin to the one given in (3.11),

or Ψk(u)
u→0→ a

√
u + ..... In the spirit of the discussion at the end of section 2.1 we

must rescale the fluctuations by a matrix Φ̄I = DI
JΦJ , or

(
EL
k (u)

Ψk(u)

)
=

(
1 0

0
√
u

)(
ĒL
k (u)

Ψ̄k(u)

)
, (C.1)

and compute the new coefficient matrices ÃIJ , B̃IJ and C̃IJ as given in (2.8a), (2.8b)

and (2.8c). The coefficients, FIJ , are functions of the embedding solution, d̃, ω, q

and u which are best given in terms of the following functions

g(u) = ψ̃(u)6 + d̃2u3 , (C.2a)

h(u) =
g(u)

ψ̃(u)10
(
ψ̃(u)2 + 4u2f(u)ψ̃′(u)2

) . (C.2b)

We find, in terms of the usual dimensionless ratios w = ω/2πT and q = q/2πT ,
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ĀLL = N ψ̃6fg
√
h

w2g − q2fψ̃6

1

(2πT )2

u→0−→ N
ω2 − q2

+ ... ,

ĀLΨ = N 2i qd̃ u5/2f 2hψ′ψ̃10

w2g − q2fψ̃6

(
πTL2

2πα′

)
1

2πT

u→0−→ 2NmDu2 q

ω2 − q2

(
πTL2

2πα′

)
+ ... ,

ĀΨΨ = N fψ̃14h3/2(w2ψ̃2g − q2(fψ̃8 − 4d̃2f 2ψ′2u5))

g(w2g − q2fψ̃6)

(
πTL2

2πα′

)2

u→0−→ N
(
πTL2

2πα′

)2

+ ... , (C.3)

B̄LL = B̃LΨ = 0 ,

B̄ΨL = N −iqd̃
√
ufψ̃8h(2ufψ̃2gψ′ + ψ(3ψ̃8 + 4u2f(d̃2u3 + 4ψ̃6)ψ′2)

g(−q2fψ̃6 + w2g)

(
πTL2

2πα′

)
1

2πT
,

B̄ΨΨ = N fψ̃12h3/2

g(−q2fψ̃6 + w2g)u

(
πTL2

2πα′

)2

(
w2(gψ̃4 + 2u(2u3d̃2 − ψ̃6)ψ̃2ψψ′ + 8u3f(d̃2u3 − 2ψ̃6)ψψ′3)

+ q2f(−ψ̃8(ψ̃2 − 2uψψ′) + 4u5d̃2fψ̃2ψ′2 + 8u3f(d̃2u3 + 2ψ̃6)ψψ′3)
)
,

with

N = NfTD7V ol(S
3)(2πα′)2(πTL2)2 =

NfNcT
2

4
. (C.4)

D. Equations of motion for the fluctuations

In this appendix we reproduce for completeness the equations of motion for the

fluctuations and analyze with care the limit q → 0. As was shown in [13], the set of

fluctuating fields A0,A1 and Ψ can be shown to satisty a set of coupled differential

equations for the gauge invariant combination (longitudinal electric field) EL given

in (3.18)

E ′′L + AE ′L +BEL + CΨ′′ +DΨ′ + EΨ = 0 , (D.1a)

Ψ′′ + FΨ′ +GΨ + HE ′L = 0 . (D.1b)

with

A = A1 ; B = B1 ; C = C1 ; D = D1 ; E = E1 ; (D.2a)

F =
D1 −D2

C1 − C2

; G =
E1 − E2

C1 − C2

; H =
A1 − A2

C1 − C2

; (D.2b)
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where

A1 = log′

[√
−γγiiγrr

ω2 + q2 γ
ii

γ00

]
,

A2 = log′
[√
−γγiiγrr

] ω2γ00

ω2γ00 + q2γii
+

∆′ − Ξ

∆

q2γii

ω2γ00 + q2γii
,

B1 = B2 = −ω
2γ00 + q2γii

γrr
,

C1 = − q γ0r

γ00γrr
∆ ,

C2 = −q(1− ψ
′∆)

ψ′γ0r
,

D1 = − q γ0r

γ00γrr
(Ξ + ∆′)− qω2

ω2γ00 + q2γii
γ0r

γrr
∆ log′

(
γii

γ00

)
,

D2 = −q(1− ψ
′∆)

ψ′γ0r
log′

[√
−γγrrgψψ(1− ψ′∆)

]
− ω2γ00

ω2γ00 + q2γii
q γ0r

γ00γrr

(
log′

(√
−γγiiγrr

)
− ∆′ − Ξ

∆

)
∆ ,

E1 = − q γ0r

γ00γrr

(
Ξ′ −∆

ω2γ00 + q2γii

γrr

)
− qω2

ω2γ00 + q2γii
γ0r

γrr
Ξ log′

(
γii

γ00

)
,

E2 =
q γ0r

γ00γrr

[
ω2γ

00

γrr
∆− ω2γ00

ω2γ00 + q2γii
Ξ

(
log′

(√
−γγiiγrr

)
− ∆′ − Ξ

∆

)]
−q(1− ψ

′∆)

ψ′γ0r
H(z) ,

where

Ξ =
1

2

(
γuuψ′2Gψψ,ψ − 3γΩΩGΩΩ,ψ

)
; ∆ = γuuψ′Gψψ ,

with Gµν components of the original 10-dimensional bulk metric and H(u) is a rather

lengthy expression we give here for completeness

H(u) =
∂u
(√
−γγuuψ′

(
Gψψ,ψ + 3

2
γΩΩGΩΩ,ψGψψ − 1

2
γuuψ′2GψψGψψ,ψ

))
√
−γγuuGψψ(1− ψ′∆)

−

(
ω2γ00(1− ψ′2Gψψ

γuu
) + q2γ11(1− ψ′∆)

)
γuu(1− ψ′∆)

−

(
3
2

(
γΩΩGΩΩ,ψ

)2
+ 3γuuγΩΩψ′2Gψψ,ψGΩΩ,ψ + 3γΩΩGΩΩ,ψψ

)
2γuuGψψ(1− ψ′∆)

−
(
ψ′2Gψψ,ψψ − 1

2
γuu (Gψψ,ψ)2 ψ′4

)
2Gψψ(1− ψ′∆)

.
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Written in this form the equations (D.1a) and (D.1b) decouple smoothly in the

limit q → 0. We have used the following definitions for the background matrix20

γab = gab + 2πα′Fab

γ0u = −2πα′A′0(u) , γ00 =
γuu

γ2
0u + γ00γuu

,

γuu =
γ00

γ2
0u + γ00γuu

, γii =
1

γii
,

γ0u =
−γ0u

γ2
0u + γ00γuu

, γΩΩ =
1

γΩΩ

.

Note also that γ0u = −γu0 and γ0u = −γu0. We also denote
√
−γ ≡

√
− det γab

taking into account only the radial part.
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