86 research outputs found

    The Asolant/Rubin-5 Technology Demonstration Mission - System Description and First Flight Results

    Get PDF
    This paper addresses the Asolant/Rubin-5 flight experiment conducted onboard the upper stage of a Cosmos rocket in late 2005. The main objective of the project was to flight-qualify a newly developed combined solar cell/antenna device, the so-called Advanced SOLar ANTenna (ASOLANT) technology. In order to assess both, the reception as well as emission of R/F signals, two different devices were involved in the mission. One was linked to a space-borne Phoenix-S GPS receiver to examine the receiving performance. A second device was designed to send out S-Band beacon signals generated by the SAFIR-S amateur radio transmitter to evaluate the radiation characteristics. Moreover, both ASOLANT devices supplied the electrical power for the onboard systems. Telecommand and telemetry functionalities were provided by an ORBCOMM communicator making use of the ORBCOMM satellite network to relay data between space and ground. This unit, furthermore, served as onboard computer. The experiment was launched along with eight multinational payload satellites. It was designed to remain attached to the rockets upper stage after burnout. Due to a separation failure of one of the copassengers, the primary mission objectives could not be fully met. Nevertheless, a sufficient number of data was retrieved to confirm the good overall performance of the ASOLANT devices. Roughly ten month after the launch, still most system components are operational and experiment data are transmitted to ground. Following a description of the main flight system components and the overall ystem architecture, the paper summarizes the hitherto obtained experiment results

    Reflections inside an elliptical dielectric lens antenna,”

    Get PDF
    Abstract: The reflections inside the elliptical lens of a typical millimetre wave antenna are investigated. In particular, it is seen that these reflections may significantly affect the input impedance of a radiating element which is located at the lens focus, owing to the presence there of a point caustic of doubly reflected rays. The presence of a caustic prevents the field prediction inside the lens by a direct application of geometrical optics. Consequently, the field inside the lens is calculated by means of the physical optics currents associated with singly and doubly reflected rays

    Development of large radii half-wave plates for CMB satellite missions

    Full text link
    The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.Comment: 16 page

    In-flight experiment for combined planar antennas and solar cells (SOLANT)

    Full text link

    Near-field measurement of a planar meta-surface illuminated by dipole antennas

    Get PDF
    In this paper, the uniform illumination of a meta-surface that is fed by a single dipole antenna or an array is experimentally investigated by means of near-field measurements. The results of the scanned field, when the dipoles are radiating in free space and when the meta-surface is placed atop them are presented. By means of this measurement, the coupling reduction between dipoles of an array due to the presence of the meta-surface is observed. ©2008 IEEE

    Facts, Principles, and (Real) Politics

    Get PDF
    Should our factual understanding of the world influence our normative theorising about it? G.A. Cohen has argued that our ultimate normative principles should not be constrained by facts. Many others have defended or are committed to various versions or subsets of that claim. In this paper I dispute those positions by arguing that, in order to resist the conclusion that ultimate normative principles rest on facts about possibility or conceivability, one has to embrace an unsatisfactory account of how principles generate normative political judgments. So political theorists have to choose between principles ostensibly unbiased by our current understanding of human motivation and political reality, or principles capable of reliably generating political judgments. I conclude with wider methodological observations in defence of the latter option, and so of a return to political philosophy’s traditional blend of normative and descriptive elements

    Planck pre-launch status: The optical system

    Get PDF
    Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers
    • …
    corecore