192 research outputs found

    Identification of Reissner's fiber-like glycoproteins in two species of freshwater planarians (Tricladida), by use of specific polyclonal and monoclonal antibodies

    Get PDF
    By using one polyclonal antiserum raised against bovine Reissner's fiber and seven monoclonal antibodies raised against bovine Reissner's fiber and against immunopurified bovine subcommissural organ glycoproteins, we have investigated two freshwater planarian species (Girardia tigrina, Schmidtea mediterranea) by light- and electron-microscopic immunocytochemistry. ELISA probes showed that the monoclonal antibodies recognized different, nonoverlapping, unrepeated, proteinaceous epitopes present in the same compounds of bovine Reissner's fiber. Cells immunoreactive to the polyclonal and monoclonal antibodies were found in the dorsal and ventral integument of both planarian species. Labeled cuboid epidermal cells bore cilia and displayed several types of secretory granules; they were covered by a film of immunoreactive material. Studies on adjacent thin and semithin sections revealed coexistence of label in the same regions and in the same cells when two different monoclonal antibodies were used. These results indicate that a secretory substance immunologically similar to the secretion of the vertebrate subcommissural organ is present in primitive tripoblasts such as planarians, suggesting that these secretions are ancient and well conserved in phylogeny

    Evaluación de la competencia clínica de tutores de residentes de medicina familiar y comunitaria

    Get PDF
    ObjetivoDescribir la primera experiencia de una evaluación clínica objetiva y estructurada (ECOE) a tutores de residentes realizada en la comunidad autónoma de AndalucíaDiseñoObservacional descriptivoEmplazamientoUnidad Docente de Medicina Familiar y Comunitaria de HuelvaParticipantesTutores de residentes de medicina familiar y comunitariaMediciones principalesLos componentes competenciales que se consensuaron y ponderaron fueron los siguientes: anamnesis, exploración física, comunicación,habilidades técnicas, manejo, atención a la familia y actividades preventivas. La selección de las 10 situaciones clínicas de las que constaba la prueba se realizó utilizando unos criterios de priorización según la prevalencia, gravedad clínica, importancia de la prevención y del diagnóstico precoz, complejidad del caso, evaluación de la capacidad resolutiva del médico y simplicidad evaluativaResultadosRealizaron la ECOE 13 tutores. La edad media ± desviación estándar de los participantes fue de 42,8 ± 3,64 años. La prueba tuvo un coeficiente de fiabilidad (alfa de Cronbach) de 0,73. Por lo que se refiere a los resultados por participantes, la media global fue de 73 ± 6,2. Al analizar los resultados para los diferentes componentes competenciales, los mejores resultados se obtuvieron en la atención a la familia, la comunicación y las habilidades técnicasConclusionesLas pruebas de evaluación clínica objetiva y estructurada pueden ser útiles para la valoración de los tutores, con el objetivo de orientar su formación en los puntos débiles e incluso para, en un futuro no muy lejano, servir como instrumento para acreditar y reacreditar a los tutores de residentes de medicina familiar y comunitariaObjectivesWe show the first experience of the application of an objetive and structured clinical evaluation (OSCE) procedure to family medicine trainers, that has been carried out in Andalucia. The objective is to use a competence evaluation instrument that, in the short term, will be used not only for trainer accreditation but also for other public sanitary professionalsParticipantsTutors of family and commnity medicine residentsDesignObservational descriptiveSettingEducational unity of family medicinePrincipal measurementsThe competencial components to be assessed are the following: anamnesis, physical exploration, communication, technical skill, management, family attention y preventive activities. The clinical situations were selected using the following priority criteria: prevalence, clinical gravity, prevention and early diagnosis importance, case complexity, doctor's capacity of evaluation and simplicityResultsThirteen family medicine trainers took part in the OSCE. Their average age was 42.8±3.6 years. The test had an overall reliability coefficient (Cronbach's alpha) of 0.73. The overall mean score of the participants was 73±6.2. The best results about the competencial components were family attention, communication and technical skillConclusionsThe OSCE can be a convenient tool for family medical trainer evaluation, helping to orientate their education in the weak points and, in the near future, it can also be used as an instrument do accredit family medicine trainer

    Differences and similarities of stellar populations in LAEs and LBGs at z~3.4-6.8

    Get PDF
    Lyman alpha emitters (LAEs) and Lyman break galaxies (LBGs) represent the most common groups of star-forming galaxies at high z, and the differences between their inherent stellar populations (SPs) are a key factor in understanding early galaxy formation and evolution. We have run a set of SP burst-like models for a sample of 1558 sources at 3.4 < z < 6.8 from the Survey for High-z Absorption Red and Dead Sources (SHARDS) over the GOODS-N field. This work focuses on the differences between the three different observational subfamilies of our sample: LAE–LBGs, no-Ly α LBGs, and pure LAEs. Single and double SP synthetic spectra were used to model the spectral energy distributions, adopting a Bayesian information criterion to analyze under which situations a second SP is required. We find that the sources are well modelled using a single SP in ∼79 per cent of the cases. The best models suggest that pure LAEs are typically young low-mass galaxies (⁠t∼26+41−25 Myr; Mstar∼5.6+12.0−5.5×108 M⊙⁠), undergoing one of their first bursts of star formation. On the other hand, no-Ly α LBGs require older SPs (t ∼ 71 ± 12 Myr), and they are substantially more massive (Mstar ∼ 3.5 ± 1.1 × 109 M⊙). LAE–LBGs appear as the subgroup that more frequently needs the addition of a second SP, representing an old and massive galaxy caught in a strong recent star-forming episode. The relative number of sources found from each subfamily at each z supports an evolutionary scenario from pure LAEs and single SP LAE–LBGs to more massive LBGs. Stellar mass functions are also derived, finding an increase of M* with cosmic time and a possible steepening of the low-mass slope from z ∼ 6 to z ∼ 5 with no significant change to z ∼ 4. Additionally, we have derived the SFR–Mstar relation, finding an SFR∝Mβstar behaviour with negligible evolution from z ∼ 4 to z ∼ 6

    New insight on the nature of cosmic reionizers from the CEERS survey

    Full text link
    The Epoch of Reionization (EoR) began when galaxies grew in abundance and luminosity, so their escaping Lyman continuum (LyC) radiation started ionizing the surrounding neutral intergalactic medium (IGM). Despite significant recent progress, the nature and role of cosmic reionizers are still unclear: in order to define them, it would be necessary to directly measure their LyC escape fraction (fescf_{esc}). However, this is impossible during the EoR due to the opacity of the IGM. Consequently, many efforts at low and intermediate redshift have been made to determine measurable indirect indicators in high-redshift galaxies so that their fescf_{esc} can be predicted. This work presents the analysis of the indirect indicators of 62 spectroscopically confirmed star-forming galaxies at 6z96 \leq z \leq 9 from the Cosmic Evolution Early Release Science (CEERS) survey, combined with 12 sources with public data from other JWST-ERS campaigns. From the NIRCam and NIRSpec observations, we measured their physical and spectroscopic properties. We discovered that on average 6<z<96<z<9 star-forming galaxies are compact in the rest-frame UV (rer_e \sim 0.4 kpc), are blue sources (UV-β\beta slope \sim -2.17), and have a predicted fescf_{esc} of about 0.13. A comparison of our results to models and predictions as well as an estimation of the ionizing budget suggests that low-mass galaxies with UV magnitudes fainter than M1500=18M_{1500} = -18 that we currently do not characterize with JWST observations probably played a key role in the process of reionization.Comment: 14 pages, 11 figures, submitted to A&

    Ion beam analysis of as-received, H-implanted and post implanted annealed fusion steels

    Get PDF
    The elemental distribution for as-received (AR), H implanted (AI) and post-implanted annealed (A) Eurofer and ODS-Eurofer steels has been characterized by means of micro Particle Induced X-ray Emission (μ-PIXE), micro Elastic Recoil Detection (μ-ERD) and Secondary Ion Mass Spectrometry (SIMS). The temperature and time-induced H diffusion has been analyzed by Resonance Nuclear Reaction Analysis (RNRA), Thermal Desorption Spectroscopy (TDS), ERDA and SIMS techniques. μ-PIXE measurements point out the presence of inhomogeneities in the Y distribution for ODS-Eurofer samples. RNRA and SIMS experiments evidence that hydrogen easily outdiffuses in these steels even at room temperature. ERD data show that annealing at temperatures as low as 300 °C strongly accelerates the hydrogen diffusion process, driving out up to the 90% of the initial hydrogen

    Galaxy morphology from z ~ 6 through the lens of JWST

    Get PDF
    Context: The James Webb Space Telescope's (JWST's) unprecedented combination of sensitivity, spatial resolution, and infrared coverage has enabled a new era of galaxy morphology exploration across most of cosmic history. Aims: We analyze the near-infrared (NIR ~ 0.8 -1 μm) rest-frame morphologies of galaxies with log M∗/M⊙ &gt; 9 in the redshift range of 0 &lt; z &lt; 6, compare with previous HST-based results and release the first JWST-based morphological catalog of ~20 000 galaxies in the CEERS survey. Methods: We classified the galaxies in our sample into four main broad classes: spheroid, disk+spheroid, disk, and disturbed, based on imaging with four filters: F150W, F200W, F356W, and F444W. We used convolutional neural networks (CNNs) trained on HST/WFC3 labeled images and domain-adapted to JWST/NIRCam. Results: We find that ~90% and ~75% of galaxies at z &lt; 3 have the same early and late and regular and irregular classification, respectively, in JWST and HST imaging when considering similar wavelengths. For small (large) and faint objects, JWST-based classifications tend to systematically present less bulge-dominated systems (peculiar galaxies) than HST-based ones, but the impact on the reported evolution of morphological fractions is less than ~10%. Using JWST-based morphologies at the same rest-frame wavelength ( ~0.8 -1 μm), we confirm an increase in peculiar galaxies and a decrease in bulge-dominated galaxies with redshift, as reported in previous HST-based works, suggesting that the stellar mass distribution, in addition to light distribution, is more disturbed in the early Universe. However, we find that undisturbed disk-like systems already dominate the high-mass end of the late-type galaxy population (log M∗/M⊙ &gt; 10.5) at z ~ 5, and bulge-dominated galaxies also exist at these early epochs, confirming a rich and evolved morphological diversity of galaxies ~1 Gyr after the Big Bang. Finally, we find that the morphology-quenching relation is already in place for massive galaxies at z &gt; 3, with massive quiescent galaxies (log M∗/M⊙ &gt; 10.5) being predominantly bulge-dominated.</p

    Galaxy morphology from z ~ 6 through the lens of JWST

    Get PDF
    Context: The James Webb Space Telescope's (JWST's) unprecedented combination of sensitivity, spatial resolution, and infrared coverage has enabled a new era of galaxy morphology exploration across most of cosmic history. Aims: We analyze the near-infrared (NIR ~ 0.8 -1 μm) rest-frame morphologies of galaxies with log M∗/M⊙ &gt; 9 in the redshift range of 0 &lt; z &lt; 6, compare with previous HST-based results and release the first JWST-based morphological catalog of ~20 000 galaxies in the CEERS survey. Methods: We classified the galaxies in our sample into four main broad classes: spheroid, disk+spheroid, disk, and disturbed, based on imaging with four filters: F150W, F200W, F356W, and F444W. We used convolutional neural networks (CNNs) trained on HST/WFC3 labeled images and domain-adapted to JWST/NIRCam. Results: We find that ~90% and ~75% of galaxies at z &lt; 3 have the same early and late and regular and irregular classification, respectively, in JWST and HST imaging when considering similar wavelengths. For small (large) and faint objects, JWST-based classifications tend to systematically present less bulge-dominated systems (peculiar galaxies) than HST-based ones, but the impact on the reported evolution of morphological fractions is less than ~10%. Using JWST-based morphologies at the same rest-frame wavelength ( ~0.8 -1 μm), we confirm an increase in peculiar galaxies and a decrease in bulge-dominated galaxies with redshift, as reported in previous HST-based works, suggesting that the stellar mass distribution, in addition to light distribution, is more disturbed in the early Universe. However, we find that undisturbed disk-like systems already dominate the high-mass end of the late-type galaxy population (log M∗/M⊙ &gt; 10.5) at z ~ 5, and bulge-dominated galaxies also exist at these early epochs, confirming a rich and evolved morphological diversity of galaxies ~1 Gyr after the Big Bang. Finally, we find that the morphology-quenching relation is already in place for massive galaxies at z &gt; 3, with massive quiescent galaxies (log M∗/M⊙ &gt; 10.5) being predominantly bulge-dominated.</p
    corecore