251 research outputs found

    Cell type ontologies of the Human Cell Atlas

    Get PDF
    Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body while at the same time raising the need to formalize this new knowledge. Here, we discuss current efforts to harmonize and integrate different sources of annotations of cell types and states into a reference cell ontology. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains

    Plant Reactome: a resource for plant pathways and comparative analysis

    Get PDF
    Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX

    Retear of anterior cruciate ligament grafts in female basketball players: a case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incidence of anterior cruciate ligament (ACL) injuries in young female basketball players is higher than that in male basketball players. Graft retears are more frequent with the increasing number of ACL reconstructions. The present study aimed to examine the incidence of retears in competitive female basketball players.</p> <p>Methods</p> <p>Sixty-four female basketball players (aged 12 to 29 years) who underwent primary anatomic double-bundle ACL reconstruction using hamstring grafts participated in the study. We investigated incidence, mechanism, and patient characteristics of ACL graft retears. Mann-Whitney <it>U </it>test was used for statistical analysis, and the level of significance was determined at <it>P </it>< 0.05.</p> <p>Results</p> <p>Six patients suffered from ACL graft retear (9.4%). Mean duration between primary ACL reconstruction and incidence of retears was 11.7 months. However, there were no other postoperative graft ruptures after 24 months. Primary injury and retear mechanisms varied by patient. At six months after the primary ACL reconstruction surgery, mean quadriceps and hamstring strengths were 81% and 87%, respectively, indicating favorable recovery of muscle strength. However, preoperative quadriceps and hamstring strength in the retear group were 65% and 71%, respectively. In particular, preoperative quadriceps strength in the retear group demonstrated a lower value than that in the uninjured group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>We observed a high incidence of ACL graft retears in competitive female basketball players, as previously reported. Considering the timing of graft retear occurrences, an early return to playing basketball should be avoided following ACL reconstruction. Closer attention should be paid to player preoperative condition, as well as muscle strength and postoperative status.</p

    A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss

    Get PDF
    Primary microcephaly is a genetically heterogeneous condition characterized by reduced head circumference (-3 SDS or more) and mild-to-moderate learning disability. Here, we describe clinical and molecular investigations of a microcephalic child with sensorineural hearing loss. Although consanguinity was unreported initially, detection of 13.7 Mb of copy neutral loss of heterozygosity (cnLOH) on chromosome 9 implicated the CDK5RAP2 gene. Targeted sequencing identified a homozygous E234X mutation, only the third mutation to be described in CDK5RAP2, the first in an individual of non-Pakistani descent. Sensorineural hearing loss is not generally considered to be consistent with autosomal recessive microcephaly and therefore it seems likely that the deafness in this individual is caused by the co-occurrence of a further gene mutation, independent of CDK5RAP2. Nevertheless, further detailed clinical descriptions of rare CDK5RAP2 patients, including hearing assessments will be needed to resolve fully the phenotypic range associated with mutations in this gene. This study also highlights the utility of SNP-array testing to guide disease gene identification where an autosomal recessive condition is plausible

    Gramene 2016: comparative plant genomics and pathway resources

    Get PDF
    Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to approximately 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials

    Gramene 2018: unifying comparative genomics and pathway resources for plant research

    Get PDF
    Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramene's Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene-gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces

    1Identification of genes differentially expressed in the embryonic pig cerebral cortex before and after appearance of gyration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian evolution is characterized by a progressive expansion of the surface area of the cerebral cortex, an increase that is accompanied by gyration of the cortical surface. The mechanisms controlling this gyration process are not well characterized but mutational analyses indicate that genes involved in neuronal migration play an important function. Due to the lack of gyration of the rodent brain it is important to establish alternative models to examine brain development during the gyration process. The pig brain is gyrated and accordingly is a candidate alternative model.</p> <p>Findings</p> <p>In this study we have identified genes differentially expressed in the pig cerebral cortex before and after appearance of gyration. Pig cortical tissue from two time points in development representing a non-folded, lissencephalic, brain (embryonic day 60) and primary-folded, gyrencephalic, brain (embryonic day 80) were examined by whole genome expression microarray studies. 91 differentially expressed transcripts (fold change >3) were identified. 84 transcripts were annotated and encoding proteins involved in for example neuronal migration, calcium binding, and cytoskeletal structuring. Quantitative real-time PCR was used to confirm the regulation of a subset of the identified genes.</p> <p>Conclusion</p> <p>This study provides identification of genes which are differentially expressed in the pig cerebral cortex before and after appearance of brain gyration. The identified genes include novel candidate genes which could have functional importance for brain development.</p

    No evidence for cardiac dysfunction in Kif6 mutant mice.

    Get PDF
    A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function

    Conserved Role of unc-79 in Ethanol Responses in Lightweight Mutant Mice

    Get PDF
    The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans

    Functional Identification of Neuroprotective Molecules

    Get PDF
    The central nervous system has the capacity to activate profound neuroprotection following sub-lethal stress in a process termed preconditioning. To gain insight into this potent survival response we developed a functional cloning strategy that identified 31 putative neuroprotective genes of which 28 were confirmed to provide protection against oxygen-glucose deprivation (OGD) or excitotoxic exposure to N-methyl-D-aspartate (NMDA) in primary rat cortical neurons. These results reveal that the brain possesses a wide and diverse repertoire of neuroprotective genes. Further characterization of these and other protective signals could provide new treatment opportunities for neurological injury from ischemia or neurodegenerative disease
    • …
    corecore