1,207 research outputs found
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0â3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data
Leaded tin bronzes: the effects of casting method on dry sliding behaviour
In metal-to-metal sliding bearing applications, leaded tin bronzes are widely known as materials with excellent seizure resistance. In conditions of boundary or dry lubrication, lead may smear across the sliding surface, preventing surface contact and catastrophic seizure. The aim of this study was to determine the effects of casting method on the dry sliding behaviour of leaded tin bronzes. Continuous cast, centrifugally cast, and sand cast leaded tin bronze samples with varying lead contents were subjected to pin-on-disk- testing. It was found that casting method has a significant effect on the wear behaviour of leaded tin bronzes in dry sliding conditions. With continuous cast samples, the dominant wear mode was rapid, stable microcracking along copper/lead interfacial boundaries. With centrifugally and sand cast samples, wear occurred more slowly and erratically through the formation of transfer layers. The dominant wear mode was found to be connected to the coarseness of the distribution of lead particles in the copper matrix
Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number
Background: Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. Results: An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. Conclusions: This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis.The research was financially supported by the Academy of Finland Centre of Excellence (#307335), NordForsk Nordic Centre of Excellence (#82845) and Jane and Aatos Erkko Foundation (#4605â26422). The work also received funding from the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie ActionâInnovative Training Network 2017 (#764920), and Fundação para a CiĂȘncia e a Tecnologia (CEECIND/00259/2017 to CCP)
Genetic Diversity of the Flavohemoprotein Gene of Giardia lamblia: Evidence for High Allelic Heterozygosity and Copy Number Variation
Purpose: The flavohemoprotein (gFlHb) in Giardia plays an important role in managing nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia assemblages A and B clinical isolates.
Methods: gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR fragments from each isolate were analyzed for single nucleotide variants (SNVs) and compared to genomic Illumina sequence data. Identical clone sequences were sorted into alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed by mining PacBio de novo assembled genomes in eight isolates. Homology models for assessment of SNVâs potential impact on protein function were created using Phyre2.
Results: A variable copy number of the gFlHb gene, between two and six copies, depending on isolate, was found. A total of 37 distinct sequences, representing different alleles of the gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some isolates, up to 12 different alleles were found. The total allelic diversity was high for both assemblages (> 0.9) and was coupled with a nucleotide diversity of < 0.01. The genetic variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein structure and possibly function.
Conclusion: In this study, we present evidence that gFlHb, a putative protective enzyme against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability against metronidazole toxicity.Peer Reviewe
SOAP-based services provided by the European Bioinformatics Institute
SOAP (Simple Object Access Protocol) () based Web Services technology () has gained much attention as an open standard enabling interoperability among applications across heterogeneous architectures and different networks. The European Bioinformatics Institute (EBI) is using this technology to provide robust data retrieval and data analysis mechanisms to the scientific community and to enhance utilization of the biological resources it already provides [N. Harte, V. Silventoinen, E. Quevillon, S. Robinson, K. Kallio, X. Fustero, P. Patel, P. Jokinen and R. Lopez (2004) Nucleic Acids Res., 32, 3â9]. These services are available free to all users from
A microbial platform for renewable propane synthesis based on a fermentative butanol pathway
Background
Propane (C3H8) is a volatile hydrocarbon with highly favourable physicochemical properties as a fuel, in addition to existing global markets and infrastructure for storage, distribution and utilization in a wide range of applications. Consequently, propane is an attractive target product in research aimed at developing new renewable alternatives to complement currently used petroleum-derived fuels. This study focuses on the construction and evaluation of alternative microbial biosynthetic pathways for the production of renewable propane. The new pathways utilize CoA intermediates that are derived from clostridial-like fermentative butanol pathways and are therefore distinct from the first microbial propane pathways recently engineered in Escherichia coli.
Results
We report the assembly and evaluation of four different synthetic pathways for the production of propane and butanol, designated a) atoB-adhE2 route, b) atoB-TPC7 route, c) nphT7-adhE2 route and d) nphT7-TPC7 route. The highest butanol titres were achieved with the atoB-adhE2 (473â±â3 mg/L) and atoB-TPC7 (163â±â2 mg/L) routes. When aldehyde deformylating oxygenase (ADO) was co-expressed with these pathways, the engineered hosts also produced propane. The atoB-TPC7-ADO pathway was the most effective in producing propane (220â±â3 ÎŒg/L). By (i) deleting competing pathways, (ii) including a previously designed ADOA134F variant with an enhanced specificity towards short-chain substrates and (iii) including a ferredoxin-based electron supply system, the propane titre was increased (3.40â±â0.19 mg/L).
Conclusions
This study expands the metabolic toolbox for renewable propane production and provides new insight and understanding for the development of next-generation biofuel platforms. In developing an alternative CoA-dependent fermentative butanol pathway, which includes an engineered ADO variant (ADOA134F), the study addresses known limitations, including the low bio-availability of butyraldehyde precursors and poor activity of ADO with butyraldehyde
Redirecting photosynthetic electron flux in the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3
Background Oxygen-evolving photoautotrophic organisms, like cyanobacteria, protect their photosynthetic machinery by a number of regulatory mechanisms, including alternative electron transfer pathways. Despite the importance in modulating the electron flux distribution between the photosystems, alternative electron transfer routes may compete with the solar-driven production of CO2-derived target chemicals in biotechnological systems under development. This work focused on engineered cyanobacterial Synechocystis sp. PCC 6803 strains, to explore possibilities to rescue excited electrons that would normally be lost to molecular oxygen by an alternative acceptor flavodiiron protein Flv1/3-an enzyme that is natively associated with transfer of electrons from PSI to O-2, as part of an acclimation strategy towards varying environmental conditions. Results The effects of Flv1/3 inactivation by flv3 deletion were studied in respect to three alternative end-products, sucrose, polyhydroxybutyrate and glycogen, while the photosynthetic gas fluxes were monitored by Membrane Inlet Mass Spectrometry (MIMS) to acquire information on cellular carbon uptake, and the production and consumption of O-2. The results demonstrated that a significant proportion of the excited electrons derived from photosynthetic water cleavage was lost to molecular oxygen via Flv1/3 in cells grown under high CO2, especially under high light intensities. In flv3 deletion strains these electrons could be re-routed to increase the relative metabolic flux towards the monitored target products, but the carbon distribution and the overall efficiency were determined by the light conditions and the genetic composition of the respective pathways. At the same time, the total photosynthetic capacity of the Delta flv3 strains was systematically reduced, and accompanied by upregulation of oxidative glycolytic metabolism in respect to controls with the native Flv1/3 background. Conclusions The observed metabolic changes and respective production profiles were proposedly linked with the lack of Flv1/3-mediated electron transfer, and the associated decrease in the intracellular ATP/NADPH ratio, which is bound to affect the metabolic carbon partitioning in the flv3-deficient cells. While the deletion of flv3 could offer a strategy for enhancing the photosynthetic production of desired chemicals in cyanobacteria under specified conditions, the engineered target pathways have to be carefully selected to align with the intracellular redox balance of the cells
Protons in the near-lunar wake observed by the Sub-keV Atom Reflection Analyzer on board Chandrayaan-1
Significant proton fluxes were detected in the near wake region of the Moon
by an ion mass spectrometer on board Chandrayaan-1. The energy of these
nightside protons is slightly higher than the energy of the solar wind protons.
The protons are detected close to the lunar equatorial plane at a
solar zenith angle, i.e., ~50 behind the terminator at a height of
100 km. The protons come from just above the local horizon, and move along the
magnetic field in the solar wind reference frame. We compared the observed
proton flux with the predictions from analytical models of an electrostatic
plasma expansion into a vacuum. The observed velocity was higher than the
velocity predicted by analytical models by a factor of 2 to 3. The simple
analytical models cannot explain the observed ion dynamics along the magnetic
field in the vicinity of the Moon.Comment: 28 pages, 7 figure
- âŠ