123 research outputs found
Origin of line tension for a Lennard-Jones nanodroplet
The existence and origin of line tension has remained controversial in
literature. To address this issue we compute the shape of Lennard-Jones
nanodrops using molecular dynamics and compare them to density functional
theory in the approximation of the sharp kink interface. We show that the
deviation from Young's law is very small and would correspond to a typical line
tension length scale (defined as line tension divided by surface tension)
similar to the molecular size and decreasing with Young's angle. We propose an
alternative interpretation based on the geometry of the interface at the
molecular scale
Surface nanobubbles as a function of gas type
We experimentally investigate the nucleation of surface nanobubbles on
PFDTS-coated silicon as a function of the specific gas dissolved in the water.
In each case we restrict ourselves to equilibrium conditions (,
). Not only is nanobubble nucleation a strong
function of gas type, but there also exists an optimal system temperature of
where nucleation is maximized, which is weakly
dependent on gas type. We also find that contact angle is a function of
nanobubble radius of curvature for all gas types investigated. Fitting this
data allows us to describe a line tension which is dependent on the type of
gas, indicating that the nanobubbles are sat on top of adsorbed gas molecules.
The average line tension was
Self-reported screen time and cardiometabolic risk in obese dutch adolescents
BACKGROUND: It is not clear whether the association between sedentary time and cardiometabolic risk exists among obese adolescents. We examined the association between screen time (TV and computer time) and cardiometabolic risk in obese Dutch adolescents. METHODS AND FINDINGS: For the current cross-sectional study, baseline data of 125 Dutch overweight and obese adolescents (12-18 years) participating in the Go4it study were included. Self-reported screen time (Activity Questionnaire for Adolescents and Adults) and clustered and individual cardiometabolic risk (i.e. body composition, systolic and diastolic blood pressure, low-density (LDL-C), high-density (HDL-C) and total cholesterol (TC), triglycerides, glucose and insulin) were assessed in all participants. Multiple linear regression analyses were used to assess the association between screen time and cardiometabolic risk, adjusting for age, gender, pubertal stage, ethnicity and moderate-to-vigorous physical activity. We found no significant relationship between self-reported total screen time and clustered cardiometabolic risk or individual risk factors in overweight and obese adolescents. Unexpectedly, self-reported computer time, but not TV time, was slightly but significantly inversely associated with TC (B = -0.002; CI = [-0.003;-0.000]) and LDL-C (B = -0.002; CI = [-0.001;0.000]). CONCLUSIONS: In obese adolescents we could not confirm the hypothesised positive association between screen time and cardiometabolic risk. Future studies should consider computer use as a separate class of screen behaviour, thereby also discriminating between active video gaming and other computer activities
Multi-ethnic genome-wide association study for atrial fibrillation
Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF
Histochemical and functional fibre typing of the rabbit masseter muscle.
The fibre-type distribution of the masseter muscle of the rabbit was studied by means of the myosin-ATPase and succinate dehydrogenase reactions. Six different fibre types were found and these were unequally distributed between and within the anatomical compartments of the muscle. Most of the masseter consists of slow- and fast-twitch oxidative fibres. The slow fibres increase in numbers in the deeper and more anterior regions of the muscle. Fast-twitch glycolytic fibres were almost exclusively found in the most posterior portions of the superficial and deep masseter. The fibre composition within the sagittally orientated anatomical compartments was found to be correlated with maximal contraction speeds during natural mastication as estimated from a mechanical model. However, the differences in fibre composition between the anatomical compartments (and hence between superficial and deep layers) appeared not to be correlated with contraction speed. The regional and compartmental specialisation within the masseter permits the muscle to perform many different functional roles in the generation and control of the jaw movements, jaw position and bite forces
- …