303 research outputs found

    On the design of an energy-efficient low-latency integrated protocol for distributed mobile sensor networks

    Get PDF
    Self organizing, wireless sensors networks are an emergent and challenging technology that is attracting large attention in the sensing and monitoring community. Impressive progress has been done in recent years even if we need to assume that an optimal protocol for every kind of sensor network applications can not exist. As a result it is necessary to optimize the protocol for certain scenarios. In many applications for instance latency is a crucial factor in addition to energy consumption. MERLIN performs its best in such WSNs where there is the need to reduce the latency while ensuring that energy consumption is kept to a minimum. By means of that, the low latency characteristic of MERLIN can be used as a trade off to extend node lifetimes. The performance in terms of energy consumption and latency is optimized by acting on the slot length. MERLIN is designed specifically to integrate routing, MAC and localization protocols together. Furthermore it can support data queries which is a typical application for WSNs. The MERLIN protocol eliminates the necessity to have any explicit handshake mechanism among nodes. Furthermore, the reliability is improved using multiple path message propagation in combination with an overhearing mechanism. The protocol divides the network into subsets where nodes are grouped in time zones. As a result MERLIN also shows a good scalability by utilizing an appropriate scheduling mechanism in combination with a contention period

    Protocol assessment issues in low duty cycle sensor networks: The switching energy

    Get PDF
    Energy assessment of MAC protocols for wireless sensor networks is generally based on the times of transmit, receive and sleep modes. The switching energy between two consecutive states is generally considered negligible with respect to them. Although such an assumption is valid for traditional wireless ad hoc networks, is this assumption valid also for low duty cycle wireless sensor networks? The primary objective of this work is to shed some light on relationships between node switching energy and node duty cycle over the total energy consumption. In order to achieve the target, initially, we revisit the energy spent in each state and transitions of three widespread hardware platforms for wireless sensor networks by direct measurements on the EYES node. Successively, we apply the values obtained to the SMAC protocol by using the OmNet++ simulator

    Teacher perspectives on the introduction of linguistics in the languages classroom: Evidence from a co-creation project on French, German and Spanish

    Get PDF
    Linguistics is conspicuously absent from language teaching in UK schools. A-level cultural topics cover a range of themes such as cyber-society, cultural heritage, and multiculturalism, but the approach taken to these topics is not informed by linguistics. In previous work (Sheehan et al. 2021), we have argued that this is an unfortunate omission not only because linguistics is appealing to many language students and perceived by them to be useful, but also because the existing cultural topics could be significantly enriched by the inclusion of the critical/analytical study of language itself (Corr et al. 2019). In this paper, we provide concrete examples of how linguistics can be integrated into the existing A-level curriculum for Modern Foreign Languages (MFL) in England and Wales. Reporting on a project in which teachers trialled linguistics materials co-created by us (a group of academics) and experienced languages teachers, we present evidence that linguistics materials are perceived to be both highly novel but nonetheless compatible with the existing A-level curriculum. Data from questionnaires and semi-structured interviews with participating teachers also shows that: (i) these new materials can be taught with little or no prior experience of linguistics; and (ii) adding linguistics materials to the curriculum leads to significant impacts on teacher and pupil attitudes towards language(s). Despite some challenges, which we also discuss, the results highlight again the great potential of linguistics as a component of language teaching and the contribution that it can make to the enrichment of the discipline

    Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory

    Full text link
    We study the average separation between an elastic solid and a hard solid with a nominal flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulse pressure act between the surfaces of the form p proportional to exp(-u/u0), where u is the average separation between the surfaces and u0 a constant of order the root-mean-square roughness, in good agreement with the experimental results.Comment: 6 pages, 10 figure

    Pre-therapy fasting slows epithelial turnover and modulates the microbiota but fails to mitigate methotrexate-induced gastrointestinal mucositis

    Get PDF
    BACKGROUND: Recent findings by Tang et al. (2020) show dietary restriction (30%, 2 weeks) prevents methotrexate-induced mortality by modulation of the microbiota, specifically the expansion of Lactobacillus. While fundamentally insightful, upscaling this schedule is a major obstacle to clinical uptake. Here, we evaluate a safe and clinically achievable schedule of pre-therapy fasting for 48 h on microbiota composition, body composition and intestinal proliferation, and assess its impact on the severity of methotrexate-induced gastrointestinal mucositis using a validated preclinical rat model. METHODS: Age- and weight-matched male Wistar rats were treated with a sublethal dose of 45 mg/kg methotrexate with or without pre-therapy fasting. The impact of acute fasting on epithelial proliferation, body composition and the microbiota was assessed using plasma citrulline, Ki67 immunohistochemistry, miniSpec and 16S rRNA sequencing. The severity of gastrointestinal mucositis was evaluated using plasma citrulline and body weight. RESULTS: Whilst pre-therapy fasting slowed epithelial proliferation and increased microbial diversity and richness, it also induced significant weight loss and was unable to attenuate the severity of mucositis in both age- and weight-matched groups. In contrast to Tang et al., we saw no expansion of Lactobacillus following acute fasting. CONCLUSIONS: Our findings suggest that the beneficial effects of acute fasting are masked by the detrimental effects on body weight and composition and lacking influence on Lactobacillus. Future studies should consider alternative fasting schedules or aim to induce comparable microbial and mucosal manipulation without compromising body composition using clinically feasible methods of dietary or microbial intervention

    Translational model of melphalan-induced gut toxicity reveals drug-host-microbe interactions that drive tissue injury and fever

    Get PDF
    Published: 20 April 2021PURPOSE: Conditioning therapy with high-dose melphalan (HDM) is associated with a high risk of gut toxicity, fever and infections in haematopoietic stem cell transplant (HSCT) recipients. However, validated preclinical models that adequately reflect clinical features of melphalan-induced toxicity are not available. We therefore aimed to develop a novel preclinical model of melphalan-induced toxicity that reflected well-defined clinical dynamics, as well as to identify targetable mechanisms that drive intestinal injury. METHODS: Male Wistar rats were treated with 4-8 mg/kg melphalan intravenously. The primary endpoint was plasma citrulline. Secondary endpoints included survival, weight loss, diarrhea, food/water intake, histopathology, body temperature, microbiota composition (16S sequencing) and bacterial translocation. RESULTS: Melphalan 5 mg/kg caused self-limiting intestinal injury, severe neutropenia and fever while impairing the microbial metabolome, prompting expansion of enteric pathogens. Intestinal inflammation was characterized by infiltration of polymorphic nuclear cells in the acute phases of mucosal injury, driving derangement of intestinal architecture. Ileal atrophy prevented bile acid reabsorption, exacerbating colonic injury via microbiota-dependent mechanisms. CONCLUSION: We developed a novel translational model of melphalan-induced toxicity, which has excellent homology with the well-known clinical features of HDM transplantation. Application of this model will accelerate fundamental and translational study of melphalan-induced toxicity, with the clinical parallels of this model ensuring a greater likelihood of clinical success.H. R. Wardill, C. E. M. de Mooij, A. R. da Silva Ferreira, I. P. van de Peppel, R. Havinga, H. J. M. Harmsen ... et al

    Blocking Sodium-Taurocholate Cotransporting Polypeptide Stimulates Biliary Cholesterol and Phospholipid Secretion in Mice

    Get PDF
    Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B–mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8−/− mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1−/− mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein–derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion

    Prediction of continuous and discrete kinetic parameters in horses from inertial measurement units data using recurrent artificial neural networks

    Get PDF
    Vertical ground reaction force (GRFz) measurements are the best tool for assessing horses' weight-bearing lameness. However, collection of these data is often impractical for clinical use. This study evaluates GRFz predicted using data from body-mounted IMUs and long short-term memory recurrent neural networks (LSTM-RNN). Twenty-four clinically sound horses, equipped with IMUs on the upper-body (UB) and each limb, walked and trotted on a GRFz measuring treadmill (TiF). Both systems were time-synchronised. Data from randomly selected 16, 4, and 4 horses formed training, validation, and test datasets, respectively. LSTM-RNN with different input sets (All, Limbs, UB, Sacrum, or Withers) were trained to predict GRFz curves or peak-GRFz. Our models could predict GRFz shapes at both gaits with RMSE below 0.40 N.kg−1. The best peak-GRFz values were obtained when extracted from the predicted curves by the all dataset. For both GRFz curves and peak-GRFz values, predictions made with the All or UB datasets were systematically better than with the Limbs dataset, showing the importance of including upper-body kinematic information for kinetic parameters predictions. More data should be gathered to confirm the usability of LSTM-RNN for GRFz predictions, as they highly depend on factors like speed, gait, and the presence of weight-bearing lameness

    On the thermoelectricity of correlated electrons in the zero-temperature limit

    Full text link
    The Seebeck coefficient of a metal is expected to display a linear temperature-dependence in the zero-temperature limit. To attain this regime, it is often necessary to cool the system well below 1K. We put under scrutiny the magnitude of this term in different families of strongly-interacting electronic systems. For a wide range of compounds (including heavy-fermion, organic and various oxide families) a remarkable correlation between this term and the electronic specific heat is found. We argue that a dimensionless ratio relating these two signatures of mass renormalisation contains interesting information about the ground state of each system. The absolute value of this ratio remains close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure
    corecore