460 research outputs found

    Low-voltage Ge avalanche photodetector for highly sensitive 10Gb/s Si photonic receivers

    Get PDF
    We demonstrate low-voltage germanium waveguide avalanche photodetectors (APD) with gain-bandwidth product of 88GHz. A 7.1dB sensitivity improvement is demonstrated for an APD wire-bonded to a 10Gb/s CMOS transimpedance amplifier, at -6.2V APD bias

    Low-voltage waveguide Ge APD based high sensitivity 10 Gb/s Si photonic receiver

    Get PDF
    We demonstrate low-voltage Ge waveguide avalanche photodetectors (APDs) with gain-bandwidth product over 100GHz. A 5.8dB avalanche sensitivity improvement (1x10(-12) bit error ratio at 10Gb/s) is obtained for the wire-bonded optical receiver at -5.9V APD bias

    50GHz Ge waveguide electro-absorption modulator integrated in a 220nm SOI photonics platform

    Get PDF
    We report waveguide-integrated Ge electro-absorption modulators operating at 1615nm wavelength with 3dB bandwidth beyond 50GHz and a capacitance of 10fF, A 2V voltage swing enables 4.6dB DC extinction ratio for 4.1dB insertion loss

    MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro(mi)RNAs are a class of small non-coding RNAs that play critical roles in the induction of various cancers, including lymphomas induced by oncogenic viruses. While some of the miRNAs are oncogenic, miRNAs such as miR-26a are consistently downregulated in a number of cancers, demonstrating their potential tumor suppressor functions. Global miRNA expression profiles of a number of virus-transformed avian lymphoma cell lines have shown downregulation of gga-miR-26a expression, irrespective of molecular mechanisms of transformation or the viral aetiology. The neoplastic transformation of lymphocytes by many viruses accompanies high levels of proliferative responses, mostly mediated through cytokines such as IL-2. Chicken IL-2 can modulate T-cell proliferation and cytotoxicity <it>in vitro </it>and <it>in vivo </it>and dysregulation of IL-2 expression is observed in diseases such as leukaemia.</p> <p>Results</p> <p>The expression levels of gga-miR-26a in chicken lymphoma cells transformed by 3 distinct avian oncogenic viruses, <it>viz </it>Marek's disease virus (MDV), avian leukosis virus (ALV) and Reticuloendotheliosis virus (REV) were consistently downregulated compared to the levels in the normal lymphocytes. This downregulation of miR-26a regardless of the viral etiology and molecular mechanisms of transformation was consistent with the tumor suppressor role of this miRNA. Notwithstanding this well-established role in cancer, we demonstrate the additional role of this miRNA in directly targeting chicken IL-2 through reporter and biochemical assays. The downregulation of miR-26a can relieve the suppressive effect of this miRNA on IL-2 expression.</p> <p>Conclusions</p> <p>We show that miR-26a is globally downregulated in a number of avian lymphoma cells irrespective of the mechanisms of transformation, reiterating the highly conserved tumor suppressor function of this miRNA. However, with the potential for directly targeting chicken IL-2, the downregulation of miR-26a in these tumor cells could relieve the inhibitory effect on IL-2 expression assisting in the proliferative features of the transformed lymphocyte lines.</p

    Fault diagnosis of rotor using EMD thresholding-based de-noising combined with probabilistic neural network

    Get PDF
    De-noising of signal processing is crucial for fault diagnosis in order to successfully conduct feature extraction and is an efficient method for accurate determination of cause. In this paper, the empirical mode decomposition (EMD) thresholding-based de-noising method and probabilistic neural network (PNN) are respectively used in the de-noising of the vibration signal and rotor fault diagnosis and compared with wavelet thresholding-based de-noising technology and back propagation neural network (BPNN). The results show that the clear iterative EMD interval thresholding performs better than wavelet thresholding in the de-noising of the vibration signal, and avoids the determination of wavelet basis and decomposition level. In addition, the PNN created by feature samples does not require training and has a higher accuracy than BPNN

    Dark current analysis in high-speed germanium p-i-n waveguide photodetectors

    Get PDF
    We present a dark current analysis in waveguide-coupled germanium vertical p-i-n photodetectors. In the analysis, a surface leakage current and a bulk leakage current were separated, and their activation energies were extracted. The surface leakage current originating from the minority carrier generation on the Ge layer sidewalls, governed by the Shockley-Read-Hall process and enhanced by the trap-assisted-tunneling process, was identified as the main contribution to the dark current of vertical p-i-n photodiodes at room temperature. The behavior of this surface leakage current as a function of temperature and reverse bias voltage is well reproduced by using the Hurckx model for trap-assisted-tunneling. Published by AIP Publishing

    Emergent electric field control of phase transformation in oxide superlattices.

    Get PDF
    Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality

    Development of novel melt spinning based processing route for oxide dispersion strengthened steels

    Get PDF
    Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt%) alloys produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60% by weight), fast processing time ( 100 g feedstock material) and repeatability. Heat treatment in the presence of Fe2O3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming < 20 nm Yrich oxides in the 1 Fe-5Y ribbons. Pulverized Fe-1Y-1Y ribbons were consolidated to bulk using the field assisted sintering technique (FAST) incorporating nano-sized Fe3O4 powder as the oxygen source. After FAST at 1273 K, 50 MPa and 30 min a comparatively high number density of sub-micron Y and/or Ti-rich oxides were developed. Further formation of fine-scale oxides took place during post-FAST annealing, resulting in an approximate 20% increase in hardness at temperatures below 573 K, but with a reduced hardening effect above 673 K due to a small fraction of persistent porosity and mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxide
    corecore