589 research outputs found

    An optimised algorithm for ionized impurity scattering in Monte Carlo simulations

    Full text link
    We present a new optimised model of Brookes-Herring ionized impurity scattering for use in Monte Carlo simulations of semiconductors. When implemented, it greatly decreases the execution time needed for simulations (typically by a factor of the order of 100), and also properly incorporates the great proportion of small angle scatterings that are neglected in the standard algorithm. It achieves this performance by using an anisotropic choice of scattering angle which accurately mimics the true angular distribution of ionized impurity scattering.Comment: 5 page

    George W. Hinckley Correspondence

    Get PDF
    Entries include letters from the President and Superintendent of the Good Will Home Association on personal and business stationer

    Broadening Participation in Research Focused, Upper-Division Learning Communities

    Get PDF
    We address several challenges faced by those who wish to increase the number of faculty participating in upper-division learning communities that feature a student research experience. Using illustrations from our own learning community, we describe three strategies for success that focus on providing low cost incentives and other means to promote and sustain faculty cooperation

    Just-In-Place Information for Mobile Device Interfaces

    Get PDF
    Abstract. This paper addresses the potentials of context sensitivity for making mobile device interfaces less complex and easier to interact with. Based on a semiotic approach to information representation, it is argued that the design of mobile device interfaces can benefit from spatial and temporal indexicality, reducing information complexity and interaction space of the device while focusing on information and functionality relevant here and now. Illustrating this approach, a series of design sketches show the possible redesign of an existing web and wap-based information service.

    The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network

    Get PDF
    Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 eco‐climatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the ground‐based measurements of C and nutrients in soils and plants based on overarching or “high‐level” requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON\u27s efforts will focus on a suite of data streams that will enable end‐users to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, one‐time effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing long‐term trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about long‐term changes in continental‐scale biogeochemical cycles, and is predicted to inspire further process‐based research

    Analysis of Locally Coupled 3D Manipulation Mappings Based on Mobile Device Motion

    Get PDF
    We examine a class of techniques for 3D object manipulation on mobile devices, in which the device's physical motion is applied to 3D objects displayed on the device itself. This "local coupling" between input and display creates specific challenges compared to manipulation techniques designed for monitor-based or immersive virtual environments. Our work focuses specifically on the mapping between device motion and object motion. We review existing manipulation techniques and introduce a formal description of the main mappings under a common notation. Based on this notation, we analyze these mappings and their properties in order to answer crucial usability questions. We first investigate how the 3D objects should move on the screen, since the screen also moves with the mobile device during manipulation. We then investigate the effects of a limited range of manipulation and present a number of solutions to overcome this constraint. This work provides a theoretical framework to better understand the properties of locally-coupled 3D manipulation mappings based on mobile device motion
    • 

    corecore