300 research outputs found

    RoboPol: First season rotations of optical polarization plane in blazars

    Get PDF
    We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≀1.5×10−2\le 1.5 \times 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∌5×10−5\sim 5 \times 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure

    Selective nanomanipulation using optical forces

    Full text link
    We present a detailed theoretical study of the recent proposal for selective nanomanipulation of nanometric particles above a substrate using near-field optical forces [Chaumet {\it et al.} Phys. Rev. Lett. {\bf 88}, 123601 (2002)]. Evanescent light scattering at the apex of an apertureless near-field probe is used to create an optical trap. The position of the trap is controlled on a nanometric scale via the probe and small objects can be selectively trapped and manipulated. We discuss the influence of the geometry of the particles and the probe on the efficiency of the trap. We also consider the influence of multiple scattering among the particles on the substrate and its effect on the robustness of the trap.Comment: 12 pages, 17 figure

    Impact of water shortage on soil and plant attributes in the presence of arbuscular mycorrhizal fungi from a harsh environment.

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) play a crucial role in plant health due to their ability to improve tolerance to biotic and abiotic stresses. Our aim was to evaluate the effectiveness of a pool of native AMF from a harsh environment on plant performance and changes in soil attributes under different levels of drought. An experiment using maize was established, varying the soil water content to simulate severe drought (30% of the water-holding capacity [WHC]), moderate (50% of the WHC) and no drought (80% of the WHC, control treatment). Soil and plant attributes were measured (enzyme activity, microbial biomass, AMF root colonisation and plant biomass and nutrient uptake). There was a two-fold increase in plant biomass under moderate drought when compared to no drought treatment, but there was no difference in nutrient uptake. Under severe drought, there were the highest enzyme activities related to phosphorus (P) cycling and P microbial biomass, indicating higher P microbial immobilization. The increase in AMF root colonisation was observed in plants under moderate and no drought. Our findings demonstrated that the better use of the AMF inoculum varied according to drought levels, with better performance under moderate drought due to the increase in plant biomass

    Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease

    Get PDF
    Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors

    Unified treatment of spin torques using a coupled magnetisation dynamics and three-dimensional spin current solver

    Get PDF
    A three-dimensional spin current solver based on a generalised spin drift-diffusion description, including the bulk and interfacial spin Hall effects, is integrated with a magnetisation dynamics solver. The resulting model is shown to simultaneously reproduce the spin-orbit torques generated using the spin Hall effect, spin pumping torques generated by magnetisation dynamics in multilayers, as well as the spin transfer torques acting on magnetisation regions with spatial gradients, whilst field-like and spin-like torques are reproduced in a spin valve geometry. Two approaches to modelling interfaces are analysed, one based on the spin mixing conductance and the other based on continuity of spin currents where the spin dephasing length governs the absorption of transverse spin components. In both cases analytical formulas are derived for the spin-orbit torques in a heavy metal / ferromagnet bilayer geometry, showing in general both field-like and damping-like torques are generated. The limitations of the analytical approach are discussed, showing that even in a simple bilayer geometry, due to the non-uniformity of the spin currents, a full three-dimensional treatment is required. The model is further applied to the analysis of the spin Hall angle in Pt by reproducing published experimental ferromagnetic resonance data in the bilayer geometry

    The mammals of Angola

    Get PDF
    Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide range of habitats with contrasting environmental conditions, while endemism tends to be associated with unique physiographic settings such as the Angolan Escarpment. The mammal fauna of Angola includes 2 Critically Endangered, 2 Endangered, 11 Vulnerable, and 14 Near-Threatened species at the global scale. There are also 12 data deficient species, most of which are endemics or near endemics to the countryinfo:eu-repo/semantics/publishedVersio

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    • 

    corecore