131 research outputs found

    Non-SVEA models for supercontinuum generation

    Get PDF
    We know that the modified Korteweg-de Vries (mKdV), the sine-Gordon (sG), and the mKdV-sG models can describe few-cycle optical pulse propagation beyond the slowly-varying-envelope approximation in transparent media. We show numerically that these models are also able to describe the generation of supercontinua with spectral bandwidths of several octaves. Several mechanisms of spectral broadening are highlighted, involving self-phase modulation, parametric interactions of high harmonics, and few-cycle-soliton generation

    Polarization domain wall complexes in fiber lasers

    Get PDF
    International audienceWe present a simple theoretical model that explains polarization switching in fiber ring lasers operating with a normal path-averaged dispersion and a typical intermediate level of birefringence. Such polarization dynamics, based on a type of polarization-domain-wall (PDW) structures, agree qualitatively well with our experimental observations. We also stress the complex and chaotic nature of the observed polarization-switching states. This is corroborated by detailed numerical simulations that predict the buildup of consecutive and transient PDW structures at the subnanosecond scale, which are not fully resolved experimentally

    Stationary and pulsating dissipative light bullets from a collective variable approach

    Get PDF
    A collective variable approach is used to map domains of existence for (3+1) -dimensional spatiotemporal soliton solutions of a complex cubic-quintic Ginzburg-Landau equation. A rich variety of evolution behaviors, which include stationary and pulsating dissipative soliton dynamics, is revealed. Comparisons between the results obtained by the semianalytical approach of collective variables, and those obtained by a purely numerical approach show good agreement for a wide range of equation parameters. This also demonstrates the relevance of the semianalytical method for a systematic search of stability domains for spatiotemporal solitons, leading to a dramatic reduction of the computation time. © 2009 The American Physical Society.Peer Reviewe

    Stationary and pulsating dissipative light bullets from a collective variable approach

    No full text
    A collective variable approach is used to map domains of existence for (3+1)-dimensional spatiotemporal soliton solutions of a complex cubic-quintic Ginzburg-Landau equation. A rich variety of evolution behaviors, which include stationary and pulsating dissipative soliton dynamics, is revealed. Comparisons between the results obtained by the semianalytical approach of collective variables, and those obtained by a purely numerical approach show good agreement for a wide range of equation parameters. This also demonstrates the relevance of the semianalytical method for a systematic search of stability domains for spatiotemporal solitons, leading to a dramatic reduction of the computation time

    Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays

    Full text link
    We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientation, leaving the total intensity constant. When the cavity round-trip is much longer than their duration, several independent solitons as well as bound states (molecules) may be hosted in the cavity. All these solutions coexist together and with the background solution, i.e. the solution with zero soliton. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks.Comment: quasi final resubmission version, 12 pages, 9 figure

    Rains of solitons in a figure-of-eight passively mode-locked fiber laser

    Get PDF
    We report experimental observation of rains of solitons in figure-of-eight fiber laser passively mode-locked through nonlinear optical loop mirror. Soliton pulses are created from an extended noisy background and drift until they reach a condensed phase comprising several tens of aggregated solitons. The observation of this dynamics tends to strengthen the idea of the universality of the collective behavior of solitons
    • …
    corecore