560 research outputs found
Electron vortex beams in a magnetic field: A new twist on Landau levels and Aharonov-Bohm states
We examine the propagation of the recently-discovered electron vortex beams
in a longitudinal magnetic field. We consider both the Aharonov-Bohm
configuration with a single flux line and the Landau case of a uniform magnetic
field. While stationary Aharonov-Bohm modes represent Bessel beams with flux-
and vortex-dependent probability distributions, stationary Landau states
manifest themselves as non-diffracting Laguerre-Gaussian beams. Furthermore,
the Landau-state beams possess field- and vortex-dependent phases: (i) the
Zeeman phase from coupling the quantized angular momentum to the magnetic field
and (ii) the Gouy phase, known from optical Laguerre-Gaussian beams.
Remarkably, together these phases determine the structure of Landau energy
levels. This unified Zeeman-Landau-Gouy phase manifests itself in a nontrivial
evolution of images formed by various superpositions of modes. We demonstrate
that, depending on the chosen superposition, the image can rotate in a magnetic
field with either (i) Larmor, (ii) cyclotron (double-Larmor), or (iii) zero
frequency. At the same time, its centroid always follows the classical
cyclotron trajectory, in agreement with the Ehrenfest theorem. Remarkably, the
non-rotating superpositions reproduce stable multi-vortex configurations that
appear in rotating superfluids. Our results open up an avenue for the direct
electron-microscopy observation of fundamental properties of free quantum
electron states in magnetic fields.Comment: 21 pages, 10 figures, 1 table, to appear in Phys. Rev.
Magnetic transitions and magnetodielectric effect in the antiferromagnet SrNdFeO
We investigated the magnetic phase diagram of single crystals of
SrNdFeO by measuring the magnetic properties, the specific heat and the
dielectric permittivity. The system has two magnetically active ions, Fe
and Nd. The Fe spins are antiferromagnetically ordered below 360
K with the moments lying in the ab-plane, and undergo a reorientation
transition at about 35-37 K to an antiferromagnetic order with the moments
along the c-axis. A short-range, antiferromagnetic ordering of Nd along
the c-axis was attributed to the reorientation of Fe followed by a
long-range ordering at lower temperature [S. Oyama {\it et al.} J. Phys.:
Condens. Matter. {\bf 16}, 1823 (2004)]. At low temperatures and magnetic
fields above 8 T, the Nd moments are completely spin-polarized. The
dielectric permittivity also shows anomalies associated with spin configuration
changes, indicating that this compound has considerable coupling between spin
and lattice. A possible magnetic structure is proposed to explain the results.Comment: 8 pages, 10 figures, submitted to PR
Dissipationless Spin Current between Two Coupled Ferromagnets
We demonstrate the general principle which states that a dissipationless spin
current flows between two coupled ferromagnets if their magnetic orders are
misaligned. This principle applies regardless the two ferromagnets are metallic
or insulating, and also generally applies to bulk magnetic insulators. On a
phenomenological level, this principle is analogous to Josephson effect, and
yields a dissipationless spin current that is independent from scattering. The
microscopic mechanisms for the dissipationless spin current depend on the
systems, which are elaborated in details. A uniform, static magnetic field is
further proposed to be an efficient handle to create the misaligned
configuration and stabilize the dissipationless spin current.Comment: 10 pages, 5 figure
Two-photon Lithography for 3D Magnetic Nanostructure Fabrication
Ferromagnetic materials have been utilised as recording media within data
storage devices for many decades. Confinement of the material to a two
dimensional plane is a significant bottleneck in achieving ultra-high recording
densities and this has led to the proposition of three dimensional (3D)
racetrack memories that utilise domain wall propagation along nanowires.
However, the fabrication of 3D magnetic nanostructures of complex geometry is
highly challenging and not easily achievable with standard lithography
techniques. Here, by using a combination of two-photon lithography and
electrochemical deposition, we show a new approach to construct 3D magnetic
nanostructures of complex geometry. The magnetic properties are found to be
intimately related to the 3D geometry of the structure and magnetic imaging
experiments provide evidence of domain wall pinning at a 3D nanostructured
junction
Isomorph invariance of the structure and dynamics of classical crystals
This paper shows by computer simulations that some crystalline systems have
curves in their thermodynamic phase diagrams, so-called isomorphs, along which
structure and dynamics in reduced units are invariant to a good approximation.
The crystals are studied in a classical-mechanical framework, which is
generally a good description except significantly below melting. The existence
of isomorphs for crystals is validated by simulations of particles interacting
via the Lennard-Jones pair potential arranged into a face-centered cubic (FCC)
crystalline structure; the slow vacancy-jump dynamics of a defective FCC
crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal
model does not exhibit isomorph invariances. Other systems simulated, though in
less detail, are the Wahnstrom binary Lennard-Jones crystal with the Laves crystal structure, monatomic FCC crystals of particles
interacting via the Buckingham pair potential and via a novel purely repulsive
pair potential diverging at a finite separation, an ortho-terphenyl molecular
model, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated
all have isomorphs. Based on these findings and previous simulations of liquid
models, we conjecture that crystalline solids with isomorphs include most or
all formed by atoms or molecules interacting via metallic or van der Waals
forces, whereas covalently- or hydrogen-bonded crystals are not expected to
have isomorphs. Crystals of ions or dipolar molecules constitute a limiting
case for which isomorphs are only expected when the Coulomb interactions are
relatively weak. We briefly discuss the consequences of the findings for
theories of melting and crystallization
Visual saliency and semantic incongruency influence eye movements when inspecting pictures
Models of low-level saliency predict that when we first look at a photograph our first few eye movements should be made towards visually conspicuous objects. Two experiments investigated this prediction by recording eye fixations while viewers inspected pictures of room interiors that contained objects with known saliency characteristics. Highly salient objects did attract fixations earlier than less conspicuous objects, but only in a task requiring general encoding of the whole picture. When participants were required to detect the presence of a small target, then the visual saliency of nontarget objects did not influence fixations. These results support modifications of the model that take the cognitive override of saliency into account by allowing task demands to reduce the saliency weights of task-irrelevant objects. The pictures sometimes contained incongruent objects that were taken from other rooms. These objects were used to test the hypothesis that previous reports of the early fixation of congruent objects have not been consistent because the effect depends upon the visual conspicuity of the incongruent object. There was an effect of incongruency in both experiments, with earlier fixation of objects that violated the gist of the scene, but the effect was only apparent for inconspicuous objects, which argues against the hypothesis
Scientific Objectives of Einstein Telescope
The advanced interferometer network will herald a new era in observational
astronomy. There is a very strong science case to go beyond the advanced
detector network and build detectors that operate in a frequency range from 1
Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors
will be able to probe a range of topics in nuclear physics, astronomy,
cosmology and fundamental physics, providing insights into many unsolved
problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201
- …