112 research outputs found
Van der Waals epitaxy growth of 2D ferromagnetic Cr<sub>(1+δ)</sub>Te<sub>2</sub> nanolayers with concentration-tunable magnetic anisotropy
Cr(1+δ)Te2 are pseudo-layered compounds consisting of CrTe2 transition metal dichalcogenide (TMD) layers with additional (δ) self-intercalated Cr atoms. The recent search for ferromagnetic 2D materials revived the interest into chromium tellurides. Here, Cr(1+δ)Te2 nanolayers are epitaxially grown on MoS2 (0001), forming prototypical van der Waals heterostructures. Under optimized growth conditions, ultrathin films of only two TMD layers with a single intercalated Cr-layer are achieved, forming a 2D sheet with van der Waals surfaces. Detailed compositional and structural characterization by scanning tunneling microscopy, grazing incidence x-ray diffraction, and high-resolution Rutherford backscattering indicate the layer-by-layer growth and that the δ can be tuned by post-growth annealing in a range between ∼0.5 and 1. X-ray magnetic circular dichroism and magnetometry measurements demonstrate that all self-intercalated Cr(1+δ)Te2 nanolayers exhibit strong ferromagnetism with magnetic moments larger than 3μB per Cr-atom. The magnetic properties are maintained in the ultrathin limit of a material with a single intercalation layer. Interestingly, the magnetic anisotropy can be tuned from close to isotropic (δ = 1) to a desirable perpendicular anisotropy for low δ values. Thus, the bottom-up growth of these 2D Cr(1+δ)Te2 sheets is a promising approach for designing magnetic van der Waals heterostructures
Absence of magnetic-proximity effect at the interface of BiSe and (Bi,Sb)Te with EuS
We performed x-ray magnetic circular dichroism (XMCD) measurements on
heterostructures comprising topological insulators (TIs) of the
(Bi,Sb)(Se,Te) family and the magnetic insulator EuS. XMCD measurements
allow us to investigate element-selective magnetic proximity effects at the
very TI/EuS interface. A systematic analysis reveals that there is neither
significant induced magnetism within the TI nor an enhancement of the Eu
magnetic moment at such interface. The induced magnetic moments in Bi, Sb, Te,
and Se sites are lower than the estimated detection limit of the XMCD
measurements of /at.Comment: 7 pages, 3 figures, published in Physical Review Letter
Systematics of electronic and magnetic properties in the transition metal doped SbTe quantum anomalous Hall platform
The quantum anomalous Hall effect (QAHE) has recently been reported to emerge
in magnetically-doped topological insulators. Although its general
phenomenology is well established, the microscopic origin is far from being
properly understood and controlled. Here we report on a detailed and systematic
investigation of transition-metal (TM)-doped SbTe. By combining density
functional theory (DFT) calculations with complementary experimental
techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission
(resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete
spectroscopic characterization of both electronic and magnetic properties. Our
results reveal that the TM dopants not only affect the magnetic state of the
host material, but also significantly alter the electronic structure by
generating impurity-derived energy bands. Our findings demonstrate the
existence of a delicate interplay between electronic and magnetic properties in
TM-doped TIs. In particular, we find that the fate of the topological surface
states critically depends on the specific character of the TM impurity: while
V- and Fe-doped SbTe display resonant impurity states in the vicinity
of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The
single-ion magnetic anisotropy energy and easy axis, which control the magnetic
gap opening and its stability, are also found to be strongly TM
impurity-dependent and can vary from in-plane to out-of-plane depending on the
impurity and its distance from the surface. Overall, our results provide
general guidelines for the realization of a robust QAHE in TM-doped
SbTe in the ferromagnetic state.Comment: 40 pages, 13 figure
Direct observation of multivalent states and charge transfer in Ce-doped yttrium iron garnet thin films
Due to their large magneto-optic responses, rare-earth-doped yttrium iron garnets, Y3Fe5O12 (YIG), are highly regarded for their potential in photonics and magnonics. Here, we consider the case of Ce-doped YIG (Ce-YIG) thin films, in which substitutional Ce3+ ions are magnetic because of their 4f1 ground state. In order to elucidate the impact of Ce substitution on the magnetization of YIG, we have carried out soft x-ray spectroscopy measurements on Ce-YIG films. In particular, we have used the element specificity of x-ray magnetic circular dichroism to extract the individual magnetization curves linked to Ce and Fe ions. Our results show that Ce doping triggers a selective charge transfer from Ce to the Fe tetrahedral sites in the YIG structure. This, in turn, causes a disruption of the electronic and magnetic properties of the parent compound, reducing the exchange coupling between the Ce and Fe magnetic moments and causing atypical magnetic behavior. Our work is relevant for understanding magnetism in rare-earth-doped YIG and, eventually, may enable a quantitative evaluation of the magneto-optical properties of rare-earth incorporation into YIG
Spin re-orientation induced anisotropic magnetoresistance switching in LaCoNiO thin films
Realization of novel functionalities by tuning magnetic interactions in rare
earth perovskite oxide thin films opens up exciting technological prospects.
Strain-induced tuning of magnetic interactions in rare earth cobaltates and
nickelates is of central importance due to their versatility in electronic
transport properties. Here we reported the spin re-orientation induced
switching of anisotropic magnetoresistance (AMR) and its tunability with strain
in epitaxial LaCoNiO thin films across the
ferromagnetic transition. Moreover, with strain tuning, we could observe a
two-fold to four-fold symmetry crossover in AMR across the magnetic transition
temperature. The magnetization measurements revealed an onset of ferromagnetic
transition around 50 K, and a further reduction in temperature showed a subtle
change in the magnetization dynamics, which reduced the ferromagnetic
long-range ordering and introduced glassiness in the system. X-ray absorption
and X-ray magnetic circular dichroism spectroscopy measurements over Co and Ni
L edges revealed the Co spin state transition below the magnetic transition
temperature leading to the AMR switching and also the presence of Ni and
Co ions evidencing the charge transfer from Ni to Co ions. Our work
demonstrated the tunability of magnetic interactions mediated electronic
transport in cobaltate-nickelate thin films, which is relevant in understanding
Ni-Co interactions in oxides for their technological applications such as in
AMR sensors
Control of oxygen vacancy ordering in brownmillerite thin films via ionic liquid gating
Oxygen defects and their atomic arrangements play a significant role in the physical properties of many transition metal oxides. The exemplary perovskite SrCoO3-δ (P-SCO) is metallic and ferromagnetic. However, its daughter phase, the brownmillerite SrCoO2.5 (BM-SCO), is insulating and an antiferromagnet. Moreover, BM-SCO exhibits oxygen vacancy channels (OVCs) that in thin films can be oriented either horizontally (H-SCO) or vertically (V-SCO) to the film’s surface. To date, the orientation of these OVCs has been manipulated by control of the thin film deposition parameters or by using a substrate-induced strain. Here, we present a method to electrically control the OVC ordering in thin layers via ionic liquid gating (ILG). We show that H-SCO (antiferromagnetic insulator, AFI) can be converted to P-SCO (ferromagnetic metal, FM) and subsequently to V-SCO (AFI) by the insertion and subtraction of oxygen throughout thick films via ILG. Moreover, these processes are independent of substrate-induced strain which favors formation of H-SCO in the as-deposited film. The electric-field control of the OVC channels is a path toward the creation of oxitronic devices
Effect of the valence state on the band magnetocrystalline anisotropy in two-dimensional rare-earth/noble-metal compounds
[EN] In intermetallic compounds with zero orbital momentum (L = 0) the magnetic anisotropy and the electronic band structure are interconnected. Here, we investigate this connection in divalent Eu and trivalent Gd intermetallic compounds. We find by x-ray magnetic circular dichroism an out-of-plane easy magnetization axis in two-dimensional atom-thick EuAu2. Angle-resolved photoemission spectroscopy and density-functional theory prove that this is due to strong f-d band hybridization and Eu2+ valence. In contrast, the easy in-plane magnetization of the structurally equivalent GdAu2 is ruled by spin-orbit-split d bands, notably Weyl nodal lines, occupied in the Gd3+ state. Regardless of the L value, we predict a similar itinerant electron contribution to the anisotropy of analogous compounds.Discussions with the late J. I. Cerda are warmly thanked. Financial support from Spanish Ministerio deCiencia e Innovacion (projects MAT-2017-88374-P, PID2020-116093RB-C44 and PID2019-103910GB-I00 funded by MCIN/AEI/10.13039/501100011033/) , the Basque Govern-ment (Grants No. IT-1255-19 and No. IT1260-19) , and the University of the Basque Country UPV/EHU (Grant No. GIU18/138) is acknowledged. L.F. acknowledges funding from the European Union's Horizon 2020 research and in-novation programme through the Marie Skodowska-Curie Grant Agreement MagicFACE No. 797109. We acknowl-edge SOLEIL for provision of synchrotron radiation facilities at CASSIOPEE beamline under proposal 20181362. The XMCD experiments were performed at BOREAS beamline at ALBA Synchrotron with the collaboration of ALBA staff. Computational resources were provided by DIPC
- …