16,951 research outputs found
First-principles phase diagram calculations for the HfCâTiC, ZrCâTiC, and HfCâZrC solid solutions
We report first-principles phase diagram calculations for the binary systems HfCâTiC, TiCâZrC, and HfCâZrC. Formation energies for superstructures of various bulk compositions were computed with a plane-wave pseudopotential method. They in turn were used as a basis for fitting cluster expansion Hamiltonians, both with and without approximations for excess vibrational free energies. Significant miscibility gaps are predicted for the systems TiCâZrC and HfCâTiC, with consolute temperatures in excess of 2000 K. The HfCâZrC system is predicted to be completely miscibile down to 185 K. Reductions in consolute temperature due to excess vibrational free energy are estimated to be ~7%, ~20%, and ~0%, for HfCâTiC, TiCâZrC, and HfCâZrC, respectively. Predicted miscibility gaps are symmetric for HfCâZrC, almost symmetric for HfCâTiC and asymmetric for TiCâZrC
There exist non orthogonal quantum measurements that are perfectly repeatable
We show that, contrarily to the widespread belief, in quantum mechanics
repeatable measurements are not necessarily described by orthogonal
projectors--the customary paradigm of "observable". Nonorthogonal
repeatability, however, occurs only for infinite dimensions. We also show that
when a non orthogonal repeatable measurement is performed, the measured system
retains some "memory" of the number of times that the measurement has been
performed.Comment: 4 pages, 1 figure, revtex4, minor change
Supernova Inelastic Neutrino-Nucleus Cross Sections from High-Resolution Electron Scattering Experiments and Shell-Model Calculations
Highly precise data on the magnetic dipole strength distributions from the
Darmstadt electron linear accelerator for the nuclei 50Ti, 52Cr and 54Fe are
dominated by isovector Gamow-Teller-like contributions and can therefore be
translated into inelastic total and differential neutral-current
neutrino-nucleus cross sections at supernova neutrino energies. The results
agree well with large-scale shell-model calculations, validating this model.Comment: 5 pages, 4 figures, RevTeX 4, version accepted in Phys. Rev. Letter
Disclosing hidden information in the quantum Zeno effect: Pulsed measurement of the quantum time of arrival
Repeated measurements of a quantum particle to check its presence in a region
of space was proposed long ago [G. R. Allcock, Ann. Phys. {\bf 53}, 286 (1969)]
as a natural way to determine the distribution of times of arrival at the
orthogonal subspace, but the method was discarded because of the quantum Zeno
effect: in the limit of very frequent measurements the wave function is
reflected and remains in the original subspace. We show that by normalizing the
small bits of arriving (removed) norm, an ideal time distribution emerges in
correspondence with a classical local-kinetic-energy distribution.Comment: 5 pages, 4 figures, minor change
A Bell pair in a generic random matrix environment
Two non-interacting qubits are coupled to an environment. Both coupling and
environment are represented by random matrix ensembles. The initial state of
the pair is a Bell state, though we also consider arbitrary pure states.
Decoherence of the pair is evaluated analytically in terms of purity; Monte
Carlo calculations confirm these results and also yield the concurrence of the
pair. Entanglement within the pair accelerates decoherence. Numerics display
the relation between concurrence and purity known for Werner states, allowing
us to give a formula for concurrence decay.Comment: 4 pages, 3 figure
Dark states of single NV centers in diamond unraveled by single shot NMR
The nitrogen-vacancy (NV) center in diamond is supposed to be a building
block for quantum computing and nanometer scale metrology at ambient
conditions. Therefore, precise knowledge of its quantum states is crucial.
Here, we experimentally show that under usual operating conditions the NV
exists in an equilibrium of two charge states (70% in the expected negative
(NV-) and 30% in the neutral one (NV0)). Projective quantum non-demolition
measurement of the nitrogen nuclear spin enables the detection even of the
additional, optically inactive state. The nuclear spin can be coherently driven
also in NV0 (T1 ~ 90 ms and T2 ~ 6 micro-s).Comment: 4 pages, 3 figure
Design of a fault tolerant airborne digital computer. Volume 1: Architecture
This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive
Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors
Chemical sensing properties of single wire and mat form sensor structures
fabricated from the same carbon nanotube (CNT) materials have been compared.
Sensing properties of CNT sensors were evaluated upon electrical response in
the presence of five vapours as acetone, acetic acid, ethanol, toluene, and
water. Diverse behaviour of single wire CNT sensors was found, while the mat
structures showed similar response for all the applied vapours. This indicates
that the sensing mechanism of random CNT networks cannot be interpreted as a
simple summation of the constituting individual CNT effects, but is associated
to another robust phenomenon, localized presumably at CNT-CNT junctions, must
be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and
Processing 201
FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions
In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in beta-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain beta 1-3-glucan but has no affinity for shorter beta 1-3- or beta 1-6-linked glucose oligomers. Comparative analysis with the previously identified beta-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require beta 1-6-linked glucose for efficient binding to branched beta 1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two beta-glucan-binding lectins. Our results highlight the importance of the beta-glucan cell wall component in plant-fungus interactions and the potential of beta-glucan-binding lectins as specific detection tools for fungi in vivo
On the nature of continuous physical quantities in classical and quantum mechanics
Within the traditional Hilbert space formalism of quantum mechanics, it is
not possible to describe a particle as possessing, simultaneously, a sharp
position value and a sharp momentum value. Is it possible, though, to describe
a particle as possessing just a sharp position value (or just a sharp momentum
value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that
the answer to this question is No -- that the status of individual continuous
quantities is very different in quantum mechanics than in classical mechanics.
On the contrary, I shall show that the same subtle issues arise with respect to
continuous quantities in classical and quantum mechanics; and that it is, after
all, possible to describe a particle as possessing a sharp position value
without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe
- âŠ